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Preface

Putting the quantum into magnetism might, at first sight, seem like stating
the obvious; the exchange interactions leading to collective magnetic behavior
are, after all, a pure quantum effect. Yet, for many phenomena in magnetism
this underlying quantum nature may be safely ignored at least on the qua-
litative level. The investigation of magnetic systems where quantum effects
play a dominant role and have to be accounted for in detail has, over the
last decades, evolved to be a field of very active research. On the experi-
mental side, major boosts have come from the discovery of high-temperature
superconductivity in the mid-eighties and the increasing ability of solid state
chemists to fashion magnetic systems of restricted dimensionality. While high-
temperature superconductivity has raised the question of the link between
the mechanism of superconductivity in the cuprates and spin fluctuations and
magnetic order in one- and two-dimensional spin-1/2 antiferromagnets, the
new magnetic materials have exhibited a wealth of new quantum phenomena
of interest in their own. In one-dimensional systems, the universal paradigm
of Luttinger liquid behavior has come to the center of interest; in all restric-
ted geometries, the interplay of low dimension, competing interactions and
strong quantum fluctuations generates, beyond the usual long range ordered
states, a wealth of new states of condensed matter, such as valence bond so-
lids, magnetic plateaux, spin liquid states or spin-Peierls states, to name but
a few.

The idea for this book arose during a Hereaus seminar on “Quantum
Magnetism: Microscopic Techniques For Novel States of Matter” back in
2002, where it was realized that a set of extensive tutorial reviews would
address the needs of both postgraduate students and researchers alike and
fill a longstanding gap in the literature.

The first three chapters set out to give an account of conceptual problems
and insights related to classes of systems, namely one-dimensional (Mikeska
and Kolezhuk), two-dimensional (Richter, Schulenburg and Honecker) and
molecular (Schnack) magnets.

The following five chapters are intended to introduce to methods used in
the field of quantum magnetism, both for independent reading as well as a
backup for the first chapters: this includes time-honored spin wave analysis
(Ivanov and Sen), exact diagonalization (Laflorencie and Poilblanc), quantum
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field theory (Cabra and Pujol), coupled cluster methods (Farnell and Bishop)
and the Bethe ansatz (Klümper).

To close, a more unified point of view is presented in a theoretical chap-
ter on quantum phase transitions (Sachdev) and an experimentally oriented
contribution (Lemmens and Millet), putting the wealth of phenomena into
the solid state physics context of spins, orbitals and lattice topology.

Aachen, Magdeburg, Liverpool, Manchester Ulrich Schollwöck
March 2004 Johannes Richter

Damian Farnell
Ray Bishop
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1 One-Dimensional Magnetism
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Abstract. We present an up-to-date survey of theoretical concepts and results in
the field of one-dimensional magnetism and of their relevance to experiments and
real materials. Main emphasis of the chapter is on quantum phenomena in models of
localized spins with isotropic exchange and additional interactions from anisotropy
and external magnetic fields.

Three sections deal with the main classes of model systems for 1D quantum
magnetism: S = 1/2 chains, spin chains with S > 1/2, and S = 1/2 Heisenberg
ladders. We discuss the variation of physical properties and elementary excitation
spectra with a large number of model parameters such as magnetic field, anisotropy,
alternation, next-nearest neighbour exchange etc. We describe the related quantum
phase diagrams, which include some exotic phases of frustrated chains discovered
during the last decade.

A section on modified spin chains and ladders deals in particular with mo-
dels including higher-order exchange interactions (ring exchange for S=1/2 and
biquadratic exchange for S=1 systems), with spin-orbital models and mixed spin
(ferrimagnetic) chains.

The final section is devoted to gapped one-dimensional spin systems in high
magnetic field. It describes such phenomena as magnetization plateaus and cusp
singularities, the emergence of a critical phase when the excitation gap is closed by
the applied field, and field-induced ordering due to weak three-dimensional coupling
or anisotropy. We discuss peculiarities of the dynamical spin response in the critical
and ordered phases.

1.1 Introduction

The field of low-dimensional magnetism can be traced back some 75 years ago:
In 1925 Ernst Ising followed a suggestion of his academic teacher Lenz and
investigated the one-dimensional (1D) version of the model which is now well
known under his name [1] in an effort to provide a microscopic justification
for Weiss’ molecular field theory of cooperative behavior in magnets; in 1931
Hans Bethe wrote his famous paper entitled ’Zur Theorie der Metalle. I.
Eigenwerte und Eigenfunktionen der linearen Atomkette’ [2] describing the
’Bethe ansatz’ method to find the exact quantum mechanical ground state
of the antiferromagnetic Heisenberg model [3], for the 1D case. Both papers
were actually not to the complete satisfaction of their authors: The 1D Ising
model failed to show any spontaneous order whereas Bethe did not live up to

H.-J. Mikeska and A.K. Kolezhuk, One-Dimensional Magnetism, Lect. Notes Phys. 645, 1–83
(2004)
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the expectation expressed in the last sentence of his text: ’In einer folgenden
Arbeit soll die Methode auf räumliche Gitter ausgedehnt . . . werden’ (’in a
subsequent publication the method is to be extended to cover 3D lattices’).

In spite of this not very promising beginning, the field of low-dimensional
magnetism developed into one of the most active areas of today’s solid state
physics. For the first 40 years this was an exclusively theoretical field. Theo-
rists were attracted by the chance to find interesting exact results without
having to deal with the hopelessly complicated case of models in 3D. They
succeeded in extending the solution of Ising’s (classical) model to 2D (which,
as Onsager showed, did exhibit spontaneous order) and in calculating excita-
tion energies, correlation functions and thermal properties for the quantum
mechanical 1D Heisenberg model and (some of) its anisotropic generalizati-
ons. In another line of research theorists established the intimate connection
between classical models in 2D and quantum mechanical models in 1D [4,5].
An important characteristic of low-dimensional magnets is the absence of
long range order in models with a continuous symmetry at any finite tempe-
rature as stated in the theorem of Mermin and Wagner [6], and sometimes
even the absence of long range order in the ground state [7].

It was only around 1970 when it became clear that the one- and two-
dimensional models of interest to theoretical physicists might also be relevant
for real materials which could be found in nature or synthesized by ingenious
crystal growers. One of the classical examples are the early neutron scattering
experiments on TMMC [8]. Actually, magnets in restricted dimensions have
a natural realization since they exist as real bulk crystals with, however,
exchange interactions which lead to magnetic coupling much stronger in one
or two spatial directions than in the remaining ones. Thus, in contrast to 2D
lattices (on surfaces) and 2D electron gases (in quantum wells) low D magnets
often have all the advantages of bulk materials in providing sufficient intensity
for experiments investigating thermal properties (e.g. specific heat), as well
as dynamic properties (in particular quantum excitations) by e.g. neutron
scattering.

The interest in low-dimensional, in particular one-dimensional magnets
developed into a field of its own because these materials provide a unique
possibility to study ground and excited states of quantum models, possible
new phases of matter and the interplay of quantum fluctuations and thermal
fluctuations. In the course of three decades interest developed from classical
to quantum mechanics, from linear to nonlinear excitations. From the theore-
tical point of view the field is extremely broad and provides a playground for
a large variety of methods including exact solutions (using the Bethe ansatz
and the mapping to fermion systems), quantum field theoretic approaches
(conformal invariance, bosonization and the semiclassical nonlinear σ−model
(NLSM)), methods of many-body theory (using e.g. Schwinger bosons and
hard core bosons), perturbational approaches (in particular high order series
expansions) and finally a large variety of numerical methods such as exact
diagonalization (mainly using the Lanczos algorithm for the lowest eigen-
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values but also full diagonalization), density matrix renormalization group
(DMRG) and Quantum Monte Carlo (QMC) calculations.

The field of one-dimensional magnets is characterized by strong interac-
tions between theoretical and experimental research: In the early eighties,
the seminal papers of Faddeev and Takhtajan [9] who revealed the spinon
nature of the excitation spectrum of the spin-1

2 antiferromagnetic chain, and
Haldane [10] who discovered the principal difference between chains of integer
and half-integer spins caused an upsurge of interest in new quasi-1D magne-
tic materials, which substantially advanced the corresponding technology. On
the other hand, in the mid eighties, when the interest in the field seemed to
go down, a new boost came from the discovery of high temperature supercon-
ductors which turned out to be intimately connected to the strong magnetic
fluctuations which are possible in low D materials. At about the same time
a new boost for experimental investigations came from the new energy range
opened up for neutron scattering experiments by spallation sources. Further
progress of material science triggered interest in spin ladders, objects staying
“in between” one and two dimensions [11]. At present many of the pheno-
mena which turned up in the last decade remain unexplained and it seems
safe to say that low-dimensional magnetism will be an active area of research
good for surprises in many years to come.

It is thus clear that the field of 1D magnetism is vast and developing ra-
pidly. New phenomena are found and new materials appear at a rate which
makes difficult to deliver a survey which would be to any extent complete.
Our aim in this chapter will be to give the reader a proper mixture of stan-
dard results and of developing topics which could serve as an advanced in-
troduction and stimulate further reading. We try to avoid the overlap with
already existing excellent textbooks on the subject [12–14], which we recom-
mend as complementary reading. In this chapter we will therefore review
a number of issues which are characteristic for new phenomena specific for
one-dimensional magnets, concentrating more on principles and a unifying
picture than on details.

Although classical models played an important role in the early stage
of 1D magnetism, emphasis today is (and will be in this chapter) on models
where quantum effects are essential. This is also reflected on the material side:
Most investigations concentrate on compounds with either Cu2+-ions which
realize spin- 1

2 or Ni2+-ions which realize spin 1. Among the spin-1
2 chain-like

materials, CuCl2·2NC5H5 (Copperpyridinchloride = CPC) is important as
the first quantum chain which was investigated experimentally [15]. Among
today’s best realizations of the spin-1

2 antiferromagnetic Heisenberg model
we mention KCuF3 and Sr2CuO3. Another quasi-1D spin-1

2 antiferromagnet
which is widely investigated is CuGeO3 since it was identified in 1992 as
the first inorganic spin-Peierls material [16]. The prototype of ladder ma-
terials with spin-1

2 is SrCu2O3; generally, the SrCuO materials realize not
only chains and two-leg ladders but also chains with competing interactions
and ladders with more than two legs. Of particular interest is the material
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Sr14Cu24O41 which can be easily synthesized and consists of both CuO2 zig-
zag chains and Cu2O3 ladders. A different way to realize spin-1

2 is in chains
with Co++-ions which are well described by a pseudospin 1

2 : The free Co-
ion has spin 3

2 , but the splitting in the crystal surrounding is so large that
for the interest of 1D magnetism only the low-lying doublet has to be ta-
ken into account (and then has a strong tendency to Ising-like anisotropy,
e.g. in CsCoCl3). Among the spin-1 chain-like materials, CsNiF3 was impor-
tant in the classical era as a ferromagnetic xy-like chain which allowed to
demonstrate magnetic solitons; for the quantum S=1 chain and in particular
the Haldane gap first (Ni(C2H8N2)2NO2(ClO4) = NENP) and more recently
(Ni(C5H14N2)2N3(PF6) = NDMAP) are the most important compounds. It
should be realized that the anisotropy is usually very small in spin-1

2 chain
materials with Cu2+-ions whereas S=1 chains with Ni2+-ions, due to spin-
orbit effects, so far are typically anisotropic in spin space. An increasing
number of theoretical approaches and some materials exist for alternating
spin-1 and 1

2 ferrimagnetic chains and for chains with V2+−ions with spin
3
2 and Fe2+-ions with spin 2, however, to a large degree this is a field for
the future. Tables listing compounds which may serve as 1D magnets can be
found in earlier reviews [17, 18]; for a discussion of the current experimental
situation, see the Chapter by Lemmens and Millet in this book.

We will limit ourselves mostly to models of localized spins Sn with an
exchange interaction energy between pairs, Jn,m (Sn · Sm) (Heisenberg mo-
del), to be supplemented by terms describing (spin and lattice) anisotropies,
external fields etc., when necessary. Whereas for real materials the coupling
between the chains forming the 1D system and in particular the transition
from 1D to 2D systems with increasing interchain coupling is of considerable
interest, we will in this chapter consider only the weak coupling limit and
exclude phase transitions into phases beyond a strictly 1D character. With
this aim in mind, the most important single model probably is the S = 1/2
(Sα = 1

2σ
α) XXZ model in 1D

H = J
∑

n

{
1
2
(
S+

n S
−
n+1 + S−

n S
+
n+1

)
+∆Sz

nS
z
n+1

}
. (1.1)

We have decomposed the scalar product into longitudinal and transverse
terms

S1 · S2 = Sz
1S

z
2 +

1
2
(
S+

1 S
−
2 + S−

1 S
+
2

)
(1.2)

(S± = Sx ± iSy) and we note that the effect of the transverse part for
S = 1/2 is nothing but to interchange up and down spins, | ↑ ↓〉 ←→ | ↓
↑〉 (apart from a factor of 1

2 ). The Hamiltonian of (1.1), in particular for
antiferromagnetic coupling, is one of the important paradigms of both many-
body solid state physics and field theory. Important for the discussion of its
properties is the presence of symmetries leading to good quantum numbers
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such as wave vector q (translation), Sz
tot (rotation about z-axis), Stot (general

rotations, for |∆| = 1) and parity (spin inversion).
This chapter will present theoretical concepts and results, which, howe-

ver, are intimately related to experimental results. The most important link
between theory and experiment are the spin correlation functions or resp.
dynamical structure factors which for a spin chain are defined as follows:

Sα,α(q, ω) =
∑

n

∫
dtei(qn−ωt)〈Sα

n (t)Sα
0 (t = 0)〉 (1.3)

Sα,α(q) =
∑

n

eiqn〈Sα
nS

α
0 〉 =

1
2π

∫
dωSα,α(q, ω). (1.4)

S(q, ω) determines the cross section for scattering experiments as well as line
shapes in NMR and ESR experiments. A useful sum rule is the total intensity,
obtained by integrating S(q, ω) over frequency and wave vector,

1
4π2

∫
dωSα,α(q, ω) =

1
2π

∫
dqSα,α(q) = 〈(Sα

0 )2〉 (1.5)

which is simply equal to 1
3S(S + 1) in the isotropic case.

1.2 S = 1
2 Heisenberg Chain

The S = 1
2 XXZ Heisenberg chain as defined in (1.1) (XXZ model) is both

an important model to describe real materials and at the same time the
most important paradigm of low-dimensional quantum magnetism: it allows
to introduce many of the scenarios which will reappear later in this chap-
ter: broken symmetry, the gapless Luttinger liquid, the Kosterlitz-Thouless
phase transition, gapped and gapless excitation continua. The XXZ model
has played an essential role in the development of exact solutions in 1D ma-
gnetism, in particular of the Bethe ansatz technique. Whereas more details
on exact solutions can be found in the chapter by Klümper, we will adopt in
this section a more phenomenological point of view and present a short sur-
vey of the basic properties of the XXZ model, supplemented by an external
magnetic field and by some remarks for the more general XYZ model,

H = J
∑

n

{
(1 + γ)Sx

nS
x
n+1 + (1− γ)Sy

nS
y
n+1 +∆Sz

nS
z
n+1
}

−gµBH
∑

n

Sn (1.6)

as well as by further typical additional terms such as next-nearest neighbor
(NNN) interactions, alternation etc. We will use a representation with posi-
tive exchange constant J > 0 and we will frequently set J to unity, using it
as the energy scale.
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1.2.1 Ferromagnetic Phase

For ∆ < −1 the XXZ chain is in the ferromagnetic Ising phase: the ground
state is the saturated state with all spins aligned in either z or −z direction,
i.e., the classical ground state with magnetization Sz

tot = ± 1
2N , where N is

the number of sites. This is thus a phase with broken symmetry: the ground
state does not exhibit the discrete symmetry of spin reflection Sz → −Sz,
under which the Hamiltonian is invariant. In the limit ∆ = −1 this symmetry
is enlarged to the full rotational symmetry of the isotropic ferromagnet.

When an external magnetic field in z-direction is considered, the Zeeman
term as included in (1.6), HZ = −gµBH

∑
n S

z
n, has to be added to the Ha-

miltonian. Since HXXZ commutes with the total spin component Sz
tot, the ex-

ternal magnetic field results in an additional energy contribution −gµBHSz
tot

without affecting the wave functions. The symmetry under spin reflection is
lifted and the saturated ground state is stabilized.

The low-lying excited states in the ferromagnetic phase are magnons with
the total spin quantum number Sz

tot = 1
2N − 1 and the dispersion law (valid

for general spin S)

ε(q) = 2JS (1− cos q − (∆+ 1)) + 2gµBHS. (1.7)

These states are exact eigenstates of the XXZ Hamiltonian. In zero field
the excitation spectrum has a gap at q = 0 of magnitude |∆| − 1 for ∆ <
−1. At ∆ = −1 the discrete symmetry of spin reflection generalizes to the
continuous rotational symmetry and the spectrum becomes gapless. This is a
consequence of Goldstone’s theorem: the breaking of a continuous symmetry
in the ground state results in the emergence of a gapless excitation mode.
Whereas the ground state exhibits long range order, the large phase space
available to the low-lying excitations in 1D leads to exponential decay of
correlations at arbitrarily small finite temperatures following the theorem of
Mermin and Wagner [6].

Eigenstates in the subspace with two spin deviations, Sz
tot = N−2 can be

found exactly by solving the scattering problem of two magnons. This results
in the existence of bound states below the two magnon continuum (for a
review see [19]) which are related to the concept of domain walls: In general
two spin deviations correspond to 4 domains walls (4 broken bonds). However,
two spin deviations on neighboring sites correspond to 2 domain walls and
require intermediate states with a larger number of walls, i.e. higher energy, to
propagate. They therefore have lower energy and survive as a bound state.
General ferromagnetic domain wall states are formed for smaller values of
Sz

tot The ferromagnetic one-domain-wall states can be stabilized by boundary
fields opposite to each other. They contain admixtures of states with a larger
number of walls, but for ∆ < −1 they remain localized owing to conservation
of Sz

tot [20]. A remarkable exact result is that the lowest magnon energy is
not affected by the presence of a domain wall [21]: the excitation energy is
|∆|−1 both for the uniform ground state and for the one domain wall states.
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We mention two trivial, but interesting consequences of (1.7) which can
be generalized to any XXZ-type Hamiltonian conserving Sz

tot:
(i) For sufficiently strong external magnetic field the classical saturated state
is forced to be the ground state for arbitrary value of ∆ and the lowest
excitations are exactly known. If the necessary magnetic fields are within
experimentally accessible range, this can be used for an experimental deter-
mination of the exchange constants from the magnon dispersion (an example
in 2D are recent neutron scattering experiments on Cs2CuCl4 [22]).
(ii) The ferromagnetic ground state becomes unstable when the lowest spin
wave frequency becomes negative. This allows to determine e.g. the boundary
of the ferromagnetic phase for ∆ > −1 in an external field as H = Hc with
gµBHc = ∆+ 1.

1.2.2 Néel Phase

For ∆ > +1 the XXZ chain is in the antiferromagnetic Ising or Néel phase
with, in the thermodynamic limit, broken symmetry and one from 2 degene-
rate ground states, the S = 1/2 remnants of the classical Néel states. The
spatial period is 2a, and states are described in the reduced Brillouin zone
with wave vectors 0 ≤ q ≤ π/a. The ground states have Sz

tot = 0, but finite
sublattice magnetization

Nz =
∑

n

(−1)n Sz
n. (1.8)

and long range order in the corresponding correlation function. In contrast
to the ferromagnet, however, quantum fluctuations prevent the order from
being complete since the sublattice magnetization does not commute with
the XXZ Hamiltonian. For periodic boundary conditions and large but finite
N (as is the situation in numerical approaches), the two ground states mix
with energy separation ∝ exp(−const × N) (for N → ∞). Then invariance
under translation by the original lattice constant a is restored and the original
Brillouin zone, 0 ≤ q ≤ 2π/a, can be used.

The elementary excitations in the antiferromagnetic Ising phase are de-
scribed most clearly close to the Ising limit ∆ → ∞ starting from one of
the two ideal Néel states: Turning around one spin breaks two bonds and
leads to a state with energy ∆, degenerate with all states resulting from
turning around an arbitrary number of subsequent spins. These states have
Sz

tot = ±1, resp. 0 for an odd, resp. even number of turned spins. They are ap-
propriately called two-domain wall states since each of the two broken bonds
mediates between two different Néel states. The total number of these states
is N(N − 1): there are N2/4 states with Sz

tot = +1 and Sz
tot = −1 (number

of turned spins odd) and N2/2 −N states with Sz
tot = 0 (number of turned

spins even). These states are no more eigenstates when ∆−1 is finite, but
for ∆−1 
 1 they can be dealt with in perturbation theory, leading to the
excitation spectrum in the first order in 1/∆ [23]



8 H.-J. Mikeska and A.K. Kolezhuk

ω(q, k) = ∆+ 2 cos q cos 2Φ (1.9)

= ε(
q

2
+ Φ) + ε(

q

2
− Φ) (1.10)

with

ε(k) =
1
2
∆+ cos 2k. (1.11)

q is the total momentum and takes the values q = 2πl/N with l = 1, 2 . . . N/2,
Φ is the wave vector related to the superposition of domain walls with dif-
ferent distances and for Sz

tot = ±1 takes values Φ = mπ/(N + 2) with
m = 1, 2 . . . N/2. Φ is essentially a relative momentum, however, the pre-
cise values reflect the fact that the two domain walls cannot penetrate each
other upon propagation. The formulation of (1.10) makes clear that the ex-
citation spectrum is composed of two entities, domain walls with dispersion
given by (1.11) which propagate independently with momenta k1, k2. These
propagating domain walls were described first by Villain [24], marking the
first emergence of magnetic (quantum) solitons. A single domain wall is ob-
tained as eigenstate for an odd number of sites, requiring a minimum of one
domain wall, and therefore has spin projection Sz

tot = ± 1
2 . A domain wall

can hop by two sites due to the transverse interaction whence the argument
2k in the dispersion.

n

Sn
−

Ĥ
...

Neel

2 DW

(a)

0 ππ/2
q

0.5

1

E
/∆

 ∆=10 (b)

Fig. 1.1. Domain wall picture of elementary excitations in the Néel phase of the
XXZ S = 1

2 chain: (a) acting with S−
n on the Néel state, one obtains a “magnon”

which decays into two domain walls (DW) under repeated action of the Hamilto-
nian; (b) the two-DW continuum in the first order in ∆, according to (1.9)

Figure 1.1 shows the basic states of this picture and the related dispersi-
ons. The two domain wall dispersion of (1.9) is shown in the reduced Brillouin
zone; the full BZ can, however, also be used since the corresponding wave fun-
ctions (for periodic boundary conditions) are also eigenstates of the transla-
tion by one site. The elementary excitations in the antiferromagnetic Ising
phase thus form a continuum with the relative momentum of the two domain
walls serving as an internal degree of freedom.
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1.2.3 XY Phase

For −1 < ∆ < +1 and zero external field the XXZ chain is in the XY phase,
characterized by uniaxial symmetry of the easy-plane type and a gapless
excitation continuum. Whereas the full analysis of this phase for general ∆
requires the use of powerful methods such as Bethe ansatz and bosonization,
to be discussed in later chapters, an approach in somewhat simpler terms is
based on the mapping of S = 1

2 spin operators in 1D to spinless fermions via
the nonlocal Jordan-Wigner transformation [25,26]:

S+
n = c†n eiπ

∑n−1
p=1 c†

pcp , Sz
n = c†ncn −

1
2
. (1.12)

When a fermion is present (not present) at a site n, the spin projection is
Sz

n = + 1
2 (− 1

2 ). In fermion language the XXZ Hamiltonian reads

HXXZ = J
∑

n

{1
2
(
c†ncn+1 + c†n+1cn

)
+∆

(
c†ncn −

1
2
)(
c†n+1cn+1 −

1
2
)}

− gµBH
∑

n

(
c†ncn −

1
2

)
(1.13)

For general ∆ the XXZ chain is thus equivalent to an interacting 1D fermion
system. We discuss here mainly the simplest case ∆ = 0 (XX model), when
the fermion chain becomes noninteracting and is amenable to an exact analy-
sis in simple terms to a rather large extent: For periodic boundary conditions
the assembly of free fermions is fully described by the dispersion law in wave
vector space

ε(k) = J cos k − gµBH. (1.14)

Each of the fermion states can be either occupied or vacant, corresponding
to the dimension 2N of the Hilbert space for N spins with S = 1

2 . The
ground state as the state with the lowest energy has all levels with ε(k) ≤ 0
occupied: For gµBH > J all fermion levels are occupied (maximum positive
magnetization), for gµBH < −J all fermion levels are vacant (maximum
negative magnetization) whereas for intermediate H two Fermi points k =
±kF exist, separating occupied and vacant levels. This is the regime of the
XY phase with a ground state which is a simple Slater determinant. For
H = 0, as assumed in this subsection, the Fermi wave vector is kF = π/2 and
the total ground state magnetization vanishes. Magnetic field effects will be
discussed in Sect. 1.2.7.

We note that periodic boundary conditions in spin space are modified
by the transformation to fermions: the boundary term in the Hamiltonian
depends explicitly on the fermion number Nf and leads to different Hamil-
tonians for the two subspaces of even, resp. odd fermion number. For fixed
fermion number this reduces to different sets of allowed fermion momenta



10 H.-J. Mikeska and A.K. Kolezhuk

k: If the total number of spins N is even, the allowed values of fermion
momenta are given by kn = 2πIn/N , where the numbers In are integer (half-
odd-integer) if the number of fermions Nf = Sz

tot + N
2 is odd (even). The

total momentum of the ground state is thus P = Nfπ. The same two sets
of k-values are found in the Bethe ansatz solution of the XXZ chain. The
complication of two different Hilbert spaces is avoided with free boundary
conditions, giving up translational symmetry.

Static correlation functions for the XX model can be calculated for the
discrete system (without going to the continuum limit) [26]. The longitudinal
correlation function in the ground state is obtained as

〈0|Sz
nS

z
0 |0〉 = −1

4

(
2
πn

)2

(1.15)

for n odd, whereas it vanishes for even n �= 0. The transverse correlation
function is expressed as a product of two n/2×n/2 determinants; an explicit
expression is available only for the asymptotic behavior [27]

〈0|Sx
nS

x
0 |0〉 = 〈0|Sy

nS
y
0 |0〉 ∼ C

1√
n
, C ≈ 0.5884 . . . (1.16)

A discussion of these correlation functions for finite temperature has been gi-
ven by Tonegawa [28]. Static correlation functions can also be given exactly
for the open chain, thus accounting for boundary effects, see e.g. [29]. Dy-
namic correlation functions cannot be obtained at the same level of rigor as
static ones since they involve transitions between states in different Hilbert
spaces (with even resp. odd fermion number). Nevertheless, detailed results
for the asymptotic behavior have been obtained [30] and the approach to cor-
relation functions of integrable models using the determinant representation
to obtain differential equations [31] has emerged as a powerful new method.

Quantities of experimental relevance can be easily calculated from the
exact expression for the free energy in terms of the basic fermion dispersion,
(1.14),

F = −N kB T

[
ln 2 +

2
π

∫ π
2

0
dk ln cosh

(
ε(k)
2kBT

)]
. (1.17)

An important quantity is the specific heat whose low-temperature behavior
is linear in T :

C(T ) � πT

6vF
, (1.18)

where vF = (∂ε/∂k)|k=kF
= J is the Fermi velocity.

Low-lying excitations are also simply described in the fermion picture:
They are either obtained by adding or removing fermions, thus changing the
total spin projection Sz

tot by one unity and adding or removing the energy
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ε(k), or particle-hole excitations which do not change Sz
tot. Creating a general

particle-hole excitation involves moving a fermion with momentum ki inside
the Fermi sea to some momentum kf outside the Fermi sea. It is clear that
moving a fermion just across the Fermi point costs arbitrarily low energy:
the excitation spectrum is gapless. It is easily seen that for a given total mo-
mentum q = kf − ki a finite range of excitation energies is possible, thus the
spectrum of particle-hole excitations is a continuum with the initial momen-
tum k = ki as internal degree of freedom:

ω(q, k) = ε(k + q)− ε(k). (1.19)

The resulting continuum for Sz
tot = 0 is shown in Fig. 1.2.Sz

tot = ±1 exci-
tations result from the one-fermion dispersion, but develop a continuum as
well by adding particle-hole excitations with appropriate momentum; those
excitations involve changing the number of fermions by one which implies a
change of the total momentum by π, and thus the Sz

tot = ±1 spectrum is the
same as in Fig. 1.2 up to the shift by π along the q axis.

0  π  2π
 q

0

0.5

1

1.5

2

 ω
/J

 H=0
(a)

Fig. 1.2. Excitation spectrum of the spin- 1
2 XY chain in the Sz

tot = 0 subspace

For ∆ �= 0 the interacting fermion Hamiltonian can be treated in pertur-
bation theory [32]; from this approach and more generally from the Bethe
ansatz and field-theoretical methods it is established that the behavior for
−1 < ∆ < +1 is qualitatively the same as the free fermion limit ∆ = 0
considered so far: the excitation spectrum is gapless, a Fermi point exists
and correlation functions show power-law behavior. The Heisenberg chain in
the XY regime thus is in a critical phase. This phase is equivalent to the so-
called Tomonaga-Luttinger liquid [33]. The fermion dispersion to first order
in ∆ is obtained by direct perturbation theory starting from the free fermion
limit [34] (in units of J),

ε(k) = ∆− λ+ cos q

−(2∆/π) θ(1− λ)
{

arccosλ− (1− λ2)1/2 cos q
}
, (1.20)

where λ = gµBH/J , and θ is the Heaviside function.
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Finally we indicate how these results generalize for γ > 0, i.e. (see (1.6))
when the rotational symmetry in the xy-plane is broken and a unique prefer-
red direction in spin space exists: ∆ = 0 continues to result in a free fermion
system, but the basic fermion dispersion acquires a gap and the ground state
correlation function 〈0|Sx

nS
x
0 |0〉 develops long range order [26].

1.2.4 The Isotropic Heisenberg Antiferromagnet and Its Vicinity

The most interesting regime of the S = 1/2 XXZ chain is ∆ ≈ 1, i.e. the
vicinity of the isotropic Heisenberg antiferromagnet (HAF). This important
limit will be the subject of a detailed presentation in the chapters by Cabra
and Pujol, and Klümper, with the use of powerful mathematical methods of
Bethe ansatz and field theory. Here we restrict ourselves to a short discussion
of important results.

The ground state energy of the HAF is given by

E0 = −NJ ln 2 (1.21)

The asymptotic behavior of the static correlation function at the isotropic
point is [35–37]

〈0|Sn · S0|0〉 ∝ (−1)n 1
(2π)

3
2

√
lnn
n

. (1.22)

This translates to a weakly diverging static structure factor at q ≈ π,

S(q) ∝ 1
(2π)

3
2
| ln |q − π| | 32 . (1.23)

The uniform susceptibility at the HAF point shows the logarithmic correc-
tions in the temperature dependence [38]

χ(T ) =
1

π2J

(
1 +

1
2 ln(T0/T )

+ . . .

)
; (1.24)

this singular behavior at T → 0 was experimentally observed in Sr2CuO3
and SrCuO2 [39]. The elementary excitations form a particle-hole continuum
ω(q, k) = ε(q+k)− ε(k), obtained from fundamental excitations with disper-
sion law

ε(k) =
π

2
J | sin k| (1.25)

which are usually called spinons. This dispersion law was obtained by des-
Cloizeaux and Pearson [40], however, the role of ε(k) as dispersion for the
basic constituents of a particle-hole continuum was first described by Faddeev
and Takhtajan [9].
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When the HAF point is crossed, a phase transition from the gapless XY-
regime to the gapped antiferromagnetic Ising regime takes place which is
of the Kosterlitz-Thouless type: the Néel gap opens up with nonanalytic
dependence on ∆− 1 corresponding to a correlation length

ξ ∝ eπ/
√

∆−1 (1.26)

The divergence of the transverse and the longitudinal structure factors differs
when the HAF is approached from the Ising side in spite of the isotropy at
the HAF point itself [37].

In contrast to the behavior of the isotropic HAF, the correlation functions
for ∆ < 1 do not exhibit logarithmic corrections and the asymptotic behavior
in the ground state is given by

〈0|Sx
n · Sx

0 |0〉 = (−1)nAx
1
nηx

, 〈0|Sz
n · Sz

0 |0〉 = (−1)nAz
1
nηz

, (1.27)

where

ηx = η−1
z = 1− arccos∆

π
. (1.28)

For |∆| < 1 presumably exact expressions for the amplitudes Ax, Az have
been given in [41,42].

1.2.5 The Dynamical Structure Factor of the XXZ Chain

Two-Domain Wall Picture of the Excitation Continua

The dynamical structure factor S(q, ω) of the XXZ chain for low frequencies
is dominated by the elementary excitations for the HAF as well as in the
Ising and XY phases. The common feature is the presence of an excitation
continuum as was made explicit in the Néel phase and for the free fermion
limit above and stated to be true for the HAF.

In the Néel phase a one-domain wall state was seen to have Sz
tot = ±1/2.

The only good quantum number is Sz
tot and two domain walls can combine

into two states with Sz
tot = 0 and two states with Sz

tot = ±1 with equal
energies (in the thermodynamic limit) but different contributions to the DSF.
When the isotropic point is approached these four states form one triplet and
one singlet to give the fourfold degenerate spinon continuum.

For all phases the excitation continuum emerges from the presence of two
dynamically independent constituents. The spinons of the isotropic HAF can
be considered as the isotropic limit of the Néel phase domain walls. The
domain wall picture applies also to the XY phase: A XY-phase fermion can
be shown to turn into a domain wall after a nonlocal transformation [43] and
adding a fermion at a given site corresponds to reversing all spins beyond that
site. Thus the domain wall concept of the antiferromagnetic Ising regime is in
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Fig. 1.3. Spinon continuum for various anisotropies ∆ (reproduced from [46])

fact a general concept unifying the dynamics in the regime +∞ > ∆ > −1,
i.e. up to the transition to the ferromagnetic regime.

The one-DW dispersion as well as the appearance of a continuum with
an energy gap for ∆ > 1 agrees with the results obtained from Bethe ansatz
calculations [44, 45] taken in lowest order in 1/∆. We make use of the full
Bethe ansatz results for finite values of 1/∆ to show a a numerical evalua-
tion of these results. Figure 1.3 demonstrates that the gapped, anisotropic
two spinon continuum develops continuously from the antiferromagnetic Ising
phase into the gapless spinon continuum of the isotropic Heisenberg antifer-
romagnet. To make contact with the isotropic limit, in Fig. 1.3 spectra in the
Néel phase are presented using the extended Brillouin zone (the Bethe ansatz
excitations can be chosen as eigenfunctions under translation by one site).
Although these graphs are suggestive the precise relation between the Bethe
ansatz excitation wave functions and the lowest order domain wall ones (cf.
Fig. 1.1) is difficult to establish.

Frequency Dependence of S(q, ω)

In the XY regime (including the limit of the HAF) the asymptotic spa-
tial dependence of the static correlation function is generalized to the time-



1 One-Dimensional Magnetism 15

dependent case by replacing n2 by (n−vt)(n+vt) (v is the spin wave velocity).
This leads immediately to the most important property of the dynamic struc-
ture factor, namely the appearance (at T = 0) of an edge singularity at the
lower threshold of the continuum:

Sα,α(q, ω) ∝ 1
(ω2 − ω(q)2)1− ηα

2
θ(ω2 − ω(q)2) (1.29)

(obtained by bosonization for S = 1/2 in the zero temperature and long
wavelength limit, by Schulz [47]) with exponents ηα depending on the ani-
sotropy ∆ as given in (1.28) above. This expression is consistent with the
exact result obtained for the longitudinal DSF of the XX model using the
free fermion approach [48,49]:

Szz(q, ω) = 2
1√

4J2 sin2 ( q
2

)
− ω2

Θ(ω − J sin q)Θ(2J sin
q

2
− ω); (1.30)

the XX model is however peculiar since there is no divergence in Szz at the
lower continuum boundary.

This edge singularity is of essential relevance for experiments probing the
dynamics of spin chains in the XY phase including the antiferromagnetic
point and we therefore give a short survey of the phenomenological, more
physical approaches in order to provide an understanding beyond the formal
results.

The singularity is already obtained on the semiclassical level in an ex-
pansion in 1/S. This approach served to interpret the first experimental ve-
rification of the infrared singularity by neutron scattering experiments on
the material CPC [15]. In this approach the exponent to first order in 1/S
is η = 2/(πŜ), Ŝ =

√
S(S + 1) for ∆ = 1 [50] and has also been obtai-

ned to second order in 1/S for chains with XY like exchange and single-ion
anisotropy [51].

The semiclassical approach clearly shows the essence of this singularity:
Many low-lying modes which are harmonic in simple angular variables φn, θn

add up to produce the singularity in the spin variable Sn ∝ exp iφn, whose
correlations are actually measured in S(q, ω). The finite temperature result
for S(q, ω) in this approach is identical to the result of bosonization [32] which
was then generalized to the exact Bethe ansatz result with exact values η = 1
for ∆ = 1 (HAF) and η = 1

2 for ∆ = 0 (XY). The physical understanding of
the excitation continuum as domain wall continuum was finally established
by Faddeev and Takhtajan [9].

The singular behavior of the dynamic structure factor was supported by
numerical calculations using complete diagonalization. Combined with exact
results, this lead to the formulation of the so-called Müller ansatz [49,52] for
the isotropic S = 1

2 chain:

S(q, ω) =
A√

ω2
1 − ω(q)2

Θ(ω − ω1(q))Θ(ω2(q)− ω), (1.31)
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with ω1(q) = (π/2)J | sin q| and ω2(q) = πJ | sin(q/2)|. This ansatz parametri-
zes the dynamic structure factor as in (1.29) and adds an upper limit cor-
responding to the maximum two spinon energy (note that for the isotropic
chain there is no divergence at the upper continuum boundary). This ansatz
is now frequently used for an interpretation of experimental data, neglecting
the presence of small but finite excitation strength above the upper thres-
hold frequency ω2(q) as confirmed by detailed numerical investigations (the
total intensity of the two spinon continuum has been determined as 72.89
% of the value 1/4, given by the sum rule (1.5) [53]). Experimental investi-
gations of the excitation continuum include the Heisenberg antiferromagnet
CuCl2·2NC5H5 (CPC) [15] and recent work on the HAF KCuF3 [54]. Beau-
tiful pictures of the spinon continuum are also available for the spin-Peierls
material CuGeO3 [55].

Temperature dependence and lineshapes of the dynamic structure factor
for q ≈ π have been investigated by bosonization techniques [47], conformal
field theory [13] and numerical approaches [56]. Numerical calculations of all
eigenvalues for chains with 16 spins [57] have shown the full picture of the
spinon continuum and its variation with temperature. The functional form of
the Müller ansatz found strong support when the dynamical structure factor
for the Haldane-Shastry chain (Heisenberg chain on a ring geometry with long
range interactions propertional to the inverse square of the distance [58]) was
calculated exactly [59] and was shown to take exactly the form of (1.31).

For XXZ chains close to the Ising limit with their spectrum determi-
ned by gapped solitons the dynamic response is different: At T = 0 both
Sxx(q, ω) and Szz(q, ω) are dominated by the two-domain wall or spin wave
continuum in the finite frequency range determined from (1.9) with no sin-
gularity at the edges [23] (there is just an asymmetry with a steepening at
the lower frequency threshold). Upon approach to the isotropic limit the in-
frared singularity develops gradually starting from wave vector π/2. At finite
temperature an additional central peak develops from energy transfer to a
single domain wall [24]. These continua have been observed in the material
CsCoCl3 [60–62]. The two-domain wall continuum has been shown to shift
its excitation strength towards the lower edge in frequency when a (ferroma-
gnetic) NNN interaction is added to the Hamiltonian [63].

1.2.6 Modified S=1/2 Chains

In this subsection we shortly discuss a number of modifications to the ideal
S = 1/2 XXZ chain which add interesting aspects to the theoretical picture
and are also relevant for some real materials.

A theoretically particularly important model is the isotropic Heisenberg
chain with nearest and next-nearest exchange

H = J
∑

n

(Sn · Sn+1 + αSn · Sn+2) (1.32)
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which for α > 0 exhibits the effects of frustration from competing interac-
tions. In the classical limit the system develops spiral order in the ground
state for α > 1/4 whereas for S = 1/2 a phase transition to a dimerized
state occurs at α = αc ≈ 0.2411.... This dimerized state is characterized by
a singlet ground state with doubled lattice constant and twofold degener-
acy and an excitation gap to the first excited states, a band of triplets. It
is thus one of the simple examples for the emergence of an energy gap in a
1D system with rotational symmetry by dynamical symmetry breaking. This
quantum phase transition was first found at α ≈ 1/6 from the bosonization
approach [64]. The phase transition has been located with high numerical ac-
curacy by Okamoto and Nomura [65] considering the crossover between the
singlet-singlet and singlet-triplet gaps, a criterion which has proven rather
effective also in related cases later.

For α = 1/2, one arrives at the Majumdar-Ghosh limit [66], where the
exact form of these singlet ground states |0〉I,II is known to be a product of
singlets (dimers):

|0〉I = |[1, 2] · · · [2p+ 1, 2p+ 2] · · · 〉 |0〉II = |[2, 3] · · · [2p, 2p+ 1] · · · 〉
(1.33)

with the representation of a singlet as

| [2p, 2p+ 1]〉 =
1√
2

∑

s,s′
χ2p(s) εs,s′

χ2p+1(s′) (1.34)

where χm(s) is the spin state at site m and ε is the antisymmetric tensor

ε =
(

0 1
−1 0

)
. (1.35)

in spin space s = (↑, ↓). This becomes easily clear by considering the following
Hamiltonian

H̃MG =
1
4
(S1 + S2 + S3)2 +

1
4
(S2 + S3 + S4)2 +

1
4
(S3 + S4 + S5)2 + . . .

for N spins and periodic boundary conditions. H̃MG is identical to HMG

apart from a constant:

H̃MG =
∑

n

Sn · Sn+1 +
1
2

∑

n

Sn · Sn+2 +
3
4

∑

n

S2
n = HMG +

9
16
N

Using

(Sn + Sn+1 + Sn+2)2 ≥ S(S + 1)|S= 1
2

=
3
4
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we obtain

Ẽ0 ≥
3
16
N.

The two ground states obtained by covering the chain completely with singlets
formed of two spins 1/2 have energy equal to this lower bound since each
contribution of the type (Sn + Sn+1 + Sn+2)2 contains two spins which are
coupled to a singlet and therefore reduces to S2 = 3

4 . The dimer product
states are therefore ground states of the Majumdar-Ghosh Hamiltonian with
energy per spin E0/N = −3/8. It is evident that this ground state is comple-
tely disordered, i.e. all two-spin correlation functions vanish identically. There
is however, perfect order of the singlets, expressed in the statement that the
Majumdar-Ghosh ground state forms a dimer crystal. Quantitatively this is
expressed in a finite value of the dimer-dimer (four spin) correlation function

I〈0|(S1 · S2)(S2p+1 · S2p+2)|0〉I . (1.36)

for arbitrary n (and the equivalent relation for |0〉II).
Another variant of the Heisenberg chain is obtained by adding dimeriza-

tion explicitly to the Hamiltonian, giving the alternating chain

H = J
∑

n

(1 + (−1)nδ) (Sn · Sn+1) (1.37)

This model was first investigated by Cross and Fisher [67]; with explicit
dimerization the ground state is unique and a gap opens up immediately,
Eg ∝ δ2/3 (apart from logarithmic corrections). The ground state prefers to
have singlets at the strong bonds and the lowest excitations are propagating
one-triplet states. These can be considered as bound domain wall states since
two domain walls of the type described above with singlets on the ’wrong’
sites between them feel an attractive interaction growing with distance. The
model with both NNN exchange and alternation is equivalent to a spin ladder
and will be discussed in more detail in Sect. 1.4.

Models with explicit or spontaneous dimerization are now frequently used
to describe spin-Peierls chains, i.e. spin chains which dimerize due to the spin
phonon interaction. This field was stimulated in particular by the discovery
of the inorganic spin-Peierls material CuGeO3 [16]. Whereas the adiabatic li-
mit when phonons follow spins without relaxation is not appropriate for this
material, the flow equation approach has been used to reduce the general
spin-phonon model to a spin only Hamiltonian [68, 69] and the spin Peierls
gap then results from the combined action of alternation and frustration.
Phonons, however, do introduce some features not covered by this simpli-
fication [70] and it is not clear at the moment whether the simplified spin
model captures the physics of real spin Peierls materials, in particular of the
inorganic compound CuGeO3 (for a review see [71]).

Another variant of the simple 1D chain are decorated chains, where more
complicated units are inserted in the 1D arrangement. As an example we



1 One-Dimensional Magnetism 19

mention the orthogonal-dimer spin chain with frustrated plaquettes inserted
in the chain [72,73], see Fig. 1.4. Depending on the strength of the competing
interactions, this chain can be in a dimer phase or in a plaquette phase with
interesting dynamic properties. Interest in this model is motivated by its
relation to the 2D orthogonal-dimer model which is realized in the compound
SrCu2(BO3)2.

Fig. 1.4. An example of decorated chains: orthogonal-dimer spin chain [72]

Interesting aspects are found in S = 1/2 chains with random couplings.
Using the real space renormalization group it has been shown that the ground
state of the random antiferromagnetic Heisenberg chain is the random singlet
state, i.e. spins form singlets randomly with distant partners [74]. Hida has
extended these studies to dimerized chains [75]. Heisenberg chains with a
random distribution of ferro- and antiferromagnetic exchange constants have
been shown to have a different type of ground state called the large spin
state [76, 77], characterized by a fixed point distribution not only of bond
strength, but also of spin magnitudes.

1.2.7 The XXZ Chain in an External Magnetic Field

An external magnetic field leads to qualitatively new phenomena in spin
chains when the Zeeman energy becomes comparable to the scale set by the
exchange energies. Contrary to other parameters in the Hamiltonian (e.g. che-
mical composition, exchange integrals) an external field is relatively easy to
vary experimentally. Therefore these effects deserve particular attention; ac-
tually experimental and theoretical investigations involving high magnetic
fields have developed into one of the most interesting topics in the field of
low-dimensional magnetism in the last few years.

The phase diagram of the XXZ model in an external magnetic field in z-
direction is shown in Fig. 1.5: The boundary between the ferromagnetic phase
and the XY phase is given by Hc = ±J(1 + ∆). For ∆ < 1 (XY symmetry)
the XY phase extends down to H = 0. In the fermion representation the
external field acts as chemical potential, and the fermion occupation number
changes from zero to saturation when the XY phase is crossed at constant
∆. For ∆ > 1 (Ising symmetry) there is a transition from the Néel phase to
the XY phase at H = Hc1 = Eg(∆), where Eg(∆) is the triplet gap. In the
S = 1

2 chain this transition is of the second order [78] and the magnetization
appears continuously as m ∝ (H −Hc)1/2, whereas for S > 1

2 it acquires the
features of the classical first-order spin-flop transition with a jump in m at
H = Hc1 [79].
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Fig. 1.5. Phase diagram of a XXZ Heisenberg S = 1
2 chain in magnetic field

The effect of the external field on the excitation spectrum is calculated
exactly for the XX model, i.e. in the free fermion case, with the result shown
in Fig. 1.6: The Fermi points shift from kF = ±π/2 to ±(π/2+δk) and gapless
excitations are found for wave vectors q = π±2δk, where δk is determined by
J cos(π/2+δk)+H = 0 and implies incommensurability in the ground state.
This result is representative for the XY-phase and the isotropic Heisenberg
antiferromagnet. It has been confirmed in neutron scattering experiments on
the S = 1

2 chain material Cu-Benzoate [80]. On the theoretical side, e.g., line
shapes for finite external field have been calculated from the Bethe ansatz [81].
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Fig. 1.6. Excitation spectrum of the spin- 1
2 XY chain in the Sz

tot = 0 subspace for
finite external field, gµBH/J = 0.3

For the Heisenberg antiferromagnet with general anisotropies a remarka-
ble curiosity has been found by Kurmann et al [82]: For any combination
of couplings and any field direction there exists a field strength HN which
renders the ground state very simple, namely factorizable, i.e. it essentially
becomes identical to the classical ground state. Simple examples are the XXZ
model with external field in z- resp. x-direction, where the corresponding field
values are

H
(z)
N = J(1 +∆), H

(x)
N = J

√
2(1 +∆). (1.38)
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An interesting situation can develop when a uniform external field via a
staggered g-factor and possibly a Dzyaloshinkii-Moriya interaction induces a
staggered field such as in Cu-Benzoate [80] and materials of related symmetry
[83,84]: Then a staggered field is induced which is proportional to the external
field and a gap opens up which for small fields behaves as [85,86]

Eg ∝
(
H

J

)2/3

ln1/6
(
J

H

)
. (1.39)

The magnetic chain in this situation is equivalent to a quantum sine-Gordon
chain carrying solitons and breathers (soliton-antisoliton bound states) as
excitations; these were identified in neutron scattering and ESR experiments
[87] and their contributions to the dynamical structure factor were calculated
from sine-Gordon field theory [88,89].

For an external transverse field the Ising model in a transverse field is the
best known example. It is solved as free fermion model [90] and serves as one
of the standard models of a quantum phase transition [91]. More interesting
and much more difficult is the case of an XY chain where a transverse field
breaks the rotational symmetry since in this case a simple free fermion limit
does not exist and also bosonization does not go beyond establishing the
existence of a gap. Such a system is of interest as the quantum analog of the
standard example for classical soliton bearing magnetic chains like CsNiF3
[18]. The phase diagram for the Heisenberg chain in a transverse field has
been discussed already in [82] and recently again for the XX model [56]
and for the XXZ model in mean-field approximation (MFA) [92] and MFA
with additional field theoretic input [93]. Recent experiments on the XY
spin chain Cs2CoCl4 in a transverse magnetic field [94] show an interesting
phase diagram including a quantum spin liquid phase which extends to zero
temperature and are presently stimulating theoretical investigations in this
field.

1.2.8 Effects of 3D Coupling

Since the isotropic spin-1
2 chain is gapless, even a weak 3D coupling between

the chains J ′ 
 J will lead to the emergence of the long-range staggered
order. The magnitude of this order as a function of J ′ can be calculated
within the mean-field or RPA approximation [95–98]: solving the problem
of an isolated chain in an external staggered field hst, one obtains for the
staggered magnetization mst the expression [86]

mst = c [(hst/J) ln(J/hst)]
1/3

, c � 0.387. (1.40)

This is then treated as a self-consistency equation for mst after assuming the
mean-field relation hst = J̃ ′(qB)mst, where J̃ ′(q) is the Fourier transform of
the interchain interaction and qB is the magnetic Bragg wave vector. This
yields mst � 0.29 [(J ′/J) ln(J/J ′)]1/2 [98], where J ′ ≡ J̃ ′(qB).



22 H.-J. Mikeska and A.K. Kolezhuk

The dynamical susceptibilities of an isolated chain in a staggered field
were calculated in [97]. Both the longitudinal and transverse (with res-
pect to the ordered moment) polarization channels contain quasiparticle
and continuum contributions. The transverse single mode has the gap ∆ �
0.842J ′ ln1/2(J/J ′) [98], and the gap of the longitudinal mode is ∆

√
3, while

the continuum in both channels starts at 2∆. The 3D dynamical susceptibility
χ3D(q, ω) can be obtained with the help of the RPA formula

χα
3D(q, ω) =

χα
1D(q‖, ω)

1− J̃ ′(q)χα
1D(q‖, ω)

, (1.41)

where α =‖,⊥ denotes the longitudinal or transverse direction with respect
to the ordered moment. This expression follows from the usual susceptibi-
lity definition m(q, ω) = χ(q, ω)h(q, ω) if one replaces h with the effective
mean field heff = h(q, ω) + J̃ ′(q)m(q, ω). Physical excitation frequencies are
determined as poles of the χ3D. An intrinsic flaw of this approach is that
both the transverse and longitudinal modes come out gapped, while it is
physically clear that there should be gapless Goldstone modes in the trans-
verse channel at q = qB . This can be fixed [96] by the renormalization
χ⊥

1D �→ Zχ⊥
1D, where the renormalization factor Z is determined from the

condition ZJ̃ ′(qB)χ⊥
1D(qB , 0) = 1. Within this approach, the longitudinal

mode remains a well-defined gapped excitation. Such a mode was succes-
sfully observed in KCuF3 [99], but it was argued it cannot be distinguished
from the continuum in another S = 1

2 -chain material BaCu2Si2O7 [98, 100].
Those results indicate that the lifetime of the longitudinal mode can be limi-
ted by the processes of decay into a pair of transverse modes with nearly zero
frequency [98], which cannot be analyzed in framework of the RPA approach.

1.3 Spin Chains with S > 1/2

Antiferromagnetic Heisenberg spin chains with integer and half-integer value
of spin S behave in a very different way, as was discovered by Haldane twenty
years ago [10]. He has shown that the ground state of an integer-S Heisenberg
AF chain should have a finite spectral gap, though exponentially small in the
large-S limit. This special disordered state of isotropic integer-S chains with
only short-range, exponentially decaying AF spin correlations has received
the name of the Haldane phase. The most thoroughly studied example is the
S = 1 chain.

1.3.1 S = 1 Haldane Chain

The isotropic S = 1 Heisenberg antiferromagnetic chain is the simplest exam-
ple of a system with the Haldane phase and is thus often called the Haldane
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chain. Following Haldane’s conjecture it was the subject of numerous inve-
stigations and although an exact solution of the proper S = 1 HAF has not
been found, many approximate and numerical approaches have established
a coherent picture characterized by the following properties [101, 102]: The
Haldane chain has the ground state energy per spin E � −1.40 and short-
range AF spin correlations 〈Sα

0 S
β
n〉 ∝ (−1)nδαβn

−1/2e−n/ξ characterized by
the correlation length ξ � 6.0. Its lowest excitations form a massive magnon
triplet, the excitation spectrum has a gap ∆ � 0.41J at wave vector q = π,
and the dispersion of the low-lying excitations with q close to π is well descri-
bed by the “relativistic” law ε(q) =

√
∆2 + v2(q − π)2, with the spin wave

velocity v � 2.46J . The single-particle energy grows fast as q moves away
from π, so that the spectrum around q = 0 is dominated by the two-particle
continuum whose lower boundary starts at approximately 2∆. The second
lowest excitation at q = π belongs to the three-soliton continuum and has
the energy ≈ 3∆, as shown in Fig. 1.7. The gap in the spectrum translates
into an activated behavior of magnetic specific heat and susceptibility, the
fingerprints of gapped systems in macroscopic properties.

Fig. 1.7. Spectrum of low-lying excitations in S = 1 Haldane chain, from the QMC
calculation of [103]

An important property of the S = 1 Haldane chain is the so-called string
order string order which is a nonlocal quantity defined as the limiting value
of the correlator

Oα
1 (n, n′) =

〈
−Sα

n eiπ
∑n′−1

j=n+1 Sα
j Sα

n′

〉
, α = x, y, z. (1.42)

at |n − n′| → ∞. Presence of this order means that the ground state of the
chain favors such spin states where the |+〉 and |−〉 spin-1 states alternate,
“diluted” with strings of |0〉 of arbitrary length. One speaks about a “diluted
AF order”. This “diluted AF order” reaches its maximal value, 1, in the
Néel state. In the Haldane phase, however, the Néel order vanishes, while the
string order persists, its value for a rotational invariant state being limited
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by 4/9 from above. For the Haldane chain the value of the string order is
somewhat lower, OHald

1 � 0.37 [104,105].
Hidden order was originally introduced in constructing an analogy to

surface phase transitions in solid-on-solid (SOS) models [106] and to the
fractional quantum Hall effect [107]. This leads to a very visual interpretation
of the hidden order: If we define a correspondence between |+〉 sites and a
positive ∆h = +1 step of the interface position, and respectively between
|−〉 sites and a ∆h = −1 step, then hidden order corresponds to the so-
called “disordered flat” (or “fluid flat”) phase. This preroughening phase is
characterized by a flat surface with a finite average fluctuation of the surface
height, but no order in the position of the ∆h = ±1 steps. As shown by
Kennedy and Tasaki [108], the hidden symmetry breaking by the string order
parameter can be transformed into an explicit breaking of a Z2×Z2 symmetry
by a nonlocal unitary transformation which characterizes the Haldane chain.

Importance of the string order is even more stressed by the fact that the
lowest excitations of the S = 1 Haldane chain can be interpreted as solitons
in the string order [109–112].

Experimentally the Haldane chain was most comprehensively studied via
inelastic neutron scattering in S = 1 chain material Ni(C2H8N2)2NO2(ClO4)
(NENP), confirming the theoretical predictions. For higher S the experi-
ments are scarce; the Haldane phase was reported to be found in the S = 2
AF chain material MnCl3(2, 2′ − bipyridine) on the basis of the magnetiza-
tion measurements [113]: under application of an external magnetic field, the
magnetization remained zero in a finite field range, indicating presence of a
gapped phase. We postpone to Sect. 1.6 the discussion of interesting phy-
sics which arises if one succeeds to close the gap by the magnetic field, and
concentrate here on the properties of the Haldane phase itself.

Anisotropic S = 1 Haldane Chain

An interesting phase diagram emerges if one considers a S = 1 chain with
anisotropies as described by the Hamiltonian

H =
∑

n

(Sx
nS

x
n+1 + Sy

nS
y
n+1) + JzSz

nS
z
n+1 +D(Sz

n)2 (1.43)

The effects of exchange anisotropy Jz and single-ion anisotropy D are
very different, and the system exhibits a rich phase diagram [47, 106] shown
in Fig. 1.8. To visualize the characteristic features of different phases, it is
sometimes convenient to resort to the language of “solid-on-solid” models of
surface phase transitions [106]. One identifies |±〉 spin-1 states with ∆h = ±1
steps of the interface (domain walls), and treats those domain walls as par-
ticles with an internal degree of freedom –“spin” ± 1

2 . Then one can interpret
the Néel phase as a “solid flat,” or “AF spin-ordered solid” one, i.e., a phase
where there is a long-range correlation of particle positions, and their “spins”
exhibit a long-range AF order. The gapped Haldane phase corresponds to the
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Fig. 1.8. Phase diagram of the S = 1 Heisenberg chain with exchange anisotropy
Jz and single-ion anisotropy D

“AF spin-ordered fluid” phase, characterized by the AF order in “spin” but
with no order in the position of particles. The AF order disappears along the
transition to the gapless XY 1 phase which is a “spin-disordered fluid”. Ano-
ther gapless phase, the XY 2 phase, can be described as a “spin-disordered
solid” with the restored order in the particle positions. The so-called large-
D phase large-D phase, which is achieved at sufficiently large values of the
single-ion anisotropy, can be characterized as a gas of bound pairs of particles
with opposite “spin”. Those pairs unbind when D is decreased, and this tran-
sition is of the first order if it is to the ferromagnetic or to the Néel phase, of
the Kosterlitz-Thouless (KT) type on the boundary to the XY1 phase, and
Gaussian along the boundary to the Haldane phase.

The phase diagram of the anisotropic S = 1 chain was studied numerically
[114, 115]. For purely exchange anisotropy (D = 0) the Haldane phase was
found to exist in the interval from Jz ≈ 0 Jz ≈ 1.2, while for purely single-ion
anisotropy (Jz = 1) it persists from D ≈ −0.2 to D ≈ 1.

The role of anisotropy was also investigated for a S = 1
2 chain with

alternating ferro- and antiferromagnetic exchange, and a rich phase diagram
was found [105]. In the limit of strong ferromagnetic bonds this system may
be viewed as another physical model of the S = 1 Haldane chain, with the
ferro exchange playing the role of the Hund coupling.

The phase diagram in the (D, Jz) space was analyzed by Schulz [47] for
general S in the bosonization approach, which is able to capture the topology
of the phase diagram. According to his results, the diagram of Fig. 1.8 should
be generic for integer S, while for half-integer S the Haldane and large-D
phases disappear, being replaced by the XY 1 phase. Numerical studies [116]
revealed that for S = 2 the XY 1 phase creeps in between the Haldane phase
and large-D one, squeezing the Haldane phase to a narrow region near the
boundary to the Néel phase.
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1.3.2 Integer vs Half-Odd-Integer S

The emergence of an energy gap in spite of rotational invariance comes as
a surprise, especially because the classical Heisenberg chain, as well as the
only exactly solvable quantum model of a Heisenberg spin chain, namely
the S = 1

2 one, are gapless. Classical intuition expects that a state arbitrarily
close in energy to the ground state can be created by infinitesimally changing
the angles between neighboring spins. For a quantum system whose ground
state is a global singlet (the total spin Stot = 0), however, this operation may
just reproduce the initial state and thus fail to demonstrate the existence of
gapless excitations.

Nonlinear σ-Model Description

Haldane’s prediction, which created a surge of interest to one-dimensional
magnets, was based on a large-S mapping to the continuum field theory, the
so-called nonlinear sigma model (NLSM) (see e.g. [117]) which we will briefly
review (for details, see the chapter by Cabra and Pujol).

Consider a spin-S antiferromagnetic Heisenberg chain described by the
Hamiltonian

H = J
∑

Sj · Sj+1 −H ·
∑

j

Sj , (1.44)

where we have included the external magnetic field H for the sake of genera-
lity. In the quasiclassical NLSM description one starts with introducing the
set of coherent states

|n〉 = eiSzϕeiSyθ|Sz = S〉, (1.45)

where n is the unit vector parameterizing the state and having the meaning
of the spin direction. The partition function Z = Tr(e−βH), where β = 1/T
is the inverse temperature, can be rewritten as a coherent state path integral
Z =

∫
Dne−AE/�, where AE =

∫ β�

0 dτLE is the Euclidean action and τ = it
is the imaginary time.

Breaking the spin variable n into the smooth and staggered parts, nj =
mj + (−1)jlj , one can pass from discrete variables to the continuum fields
m, l subject to the constraints ml = 0, l2 + m2 = 1. We assume that
the magnetization for the low-energy states of the antiferromagnet is small,
|m| 
 |l|, and therefore neglect higher than quadratic terms in m. Then one
can show that on the mean-field level m is a slave variable, which can be
excluded from the action,

m =
1

4JS
{
i�(l× ∂τ l) + H − l(H · l)

}
. (1.46)

In weak fields and at low energies m2 may be neglected in the constraint,
so that l can be regarded as a unit vector and one arrives at the following
effective Euclidean action depending on the unit vector l only:
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AE = AB +
�

2g

∫ β�c

0
dx0

∫
dx1

{
(∂0l +

i

�c
l×B)2 + (∂1l)2

}
, (1.47)

where x0 = cτ , x1 = x, c = 2JSa
�

, and g = 2/S. In absence of the magnetic
field the model is Lorentz invariant (c plays the role of the limiting velo-
city) and is known as the O(3) NLSM with topological term. The so-called
topological, or Berry term AB is given by

AB = i2π�SQ, Q =
1
4π

∫
d2x l · (∂0l× ∂1l), (1.48)

The integer-valued quantity Q is the so-called Pontryagin index indicating
how many times the vector l sweeps the unit sphere when x sweeps the two-
dimensional space-time.

Without the topological term, the T = 0 partition function of the quan-
tum AF spin-S chain is equivalent to that of a classical 2D ferromagnet at
the effective temperature Teff = g in the continuum approximation. For in-
teger spin S the topological term is ineffective since AB is always a multiple
of 2π�, and the properties of the 1D quantum antiferromagnet can be taken
over from the 2D classical ferromagnet. (This correspondence is in fact quite
general, connecting the behavior of a Lorentz invariant quantum system in
dimension d to that of its classical counterpart in dimension D = d+ 1, and
is often referred to as the quantum-classical correspondence).

At finite temperature the 2D classical ferromagnet is known [118,119] to
have a finite correlation length ξ ∝ e2π/Teff , which, in view of the Lorentz
invariance, corresponds in the original spin chain to a finite Haldane gap

∆Hald ∝ �c/ξ = JSe−πS .

Thus, the T = 0 ground state of the integer-S isotropic Heisenberg one-
dimensional (D = 1 + 1) antiferromagnet is disordered, and the spectrum of
elementary excitations has a gap. The degeneracy of the lowest excitations
is threefold (in contrast to only double degeneracy obtained in spin wave
approximation which is absent on the Néel state with broken symmetry).
Spin correlations in real space are given by the so-called Ornstein-Zernike
correlation function

〈l(x)l(0)〉 ∝ e−|x|/ξ

|x|(D−1)/2 , |x| → ∞. (1.49)

For half-odd-integer spins, the contribution of any field configuration into
the partition function carries a nontrivial phase factor e−i2πSQ, which leads
to the interference of configurations with different Q, and at the end to the
absence of a gap in Heisenberg spin-S chains with half-odd-integer S. There is
an argument due to Affleck [117] which connects this effect to the contribution
of merons – objects with the topological charge Q = ± 1

2 which may be
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thought of as elementary entities constituting a Q = 1 solution known as the
Belavin-Polyakov soliton [120].

Although in the NLSM formulation the presence of the topological term
renders the half-odd integer spin chain theoretically more complicated than
the integer-S one, the emergence of an energy gap in the latter in spite of
rotational invariance calls for a simple physical explanation. It is instructive
to see where the intuition goes wrong; this can be seen from the statement
known as the Lieb-Schultz-Mattis theorem [26] for spins 1

2 , generalized later
by Affleck and Lieb [121] to arbitrary half-odd-integer S and by Oshikawa et
al. to finite magnetization [122]:

Generalized Lieb-Schultz-Mattis Theorem

Assume that (i) we have a spin-S chain with short-range exchange interaction,
(ii) the Hamiltonian H is invariant with respect to a translation by l lattice
constants and (iii) H is invariant with respect to arbitrary rotation around
the z axis, so that the ground state has a definite Sz

tot = LM , where L is the
number of spins in the chain.

Then, if l(S −M) is a half-odd-integer, there system is either gapless in
the thermodynamic limit L → ∞, or the ground state is degenerate, with
spontaneously broken translational symmetry.

The proof runs as follows: let |ψ0〉 be the ground state with certain ma-
gnetization M per spin. Consider the unitary twist operator

Û = exp{i2π
L

L∑

j=1

jSz
j }

and construct a new state |ψ1〉 = Û |ψ0〉. Assume for definiteness that

H =
∑

nm

{1
2
Jnm(S+

n S
−
n+m + S−

n S
+
n+m) + Jz

nmS
z
nS

z
n+m

}
;

this exact form is not essential, the same course of derivation can be per-
formed assuming presence of any powers (S+

n S
−
n+m)k. Operator Sz remains

invariant under the unitary transformation, and U†S+
n U = ei2πn/LS+

n , so
that the energy difference between |ψ0〉 and |ψ1〉 is

∆E =
∑

nm

Jnmenm(cos
2πm
L

− 1), enm ≡ 〈ψ0|S+
n S

−
n+m|ψ0〉.

Denoting
∑L

n=1 Jnmenm = Lfm and taking the thermodynamic limit L→∞,
one obtains

∆E = E1 − E0 ∝
1
L

∑

m

m2fm,
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and, if the last sum is finite (which is true for Jnm being a reasonably fast
decaying function of the distance m), we come to the conclusion that the
energy E1 of the state |ψ1〉 tends to the ground state energy E0 in the ther-
modynamic limit.

Now consider the overlap of |ψ0〉 and |ψ1〉: if they are orthogonal, one can
be sure that E1 gives a variational upper bound of the energy of the true
eigenstate, otherwise no statement can be made.

Assume that the original translational symmetry of the Hamiltonian is
not broken, i.e. that Tl|ψ0〉 = |ψ0〉, where Tl is the operator of translation by
l lattice sites, TlSnT

−1
l = Sn+l. Then the overlap

z1 = 〈ψ0|ψ1〉 = 〈ψ0|TlUT
−1
l |ψ0〉.

The transformed twist operator can be rewritten as

TlUT
−1
l = exp{i2π

L

L∑

j=1

jSz
j+l} = exp

{
i
2π
L

L∑

j=1

(j − l)Sz
j + i2π

l∑

k=1

Sz
k

}
,

where we have used periodic boundary conditions Sz
L+n = Sz

n. It is easy
to see that ei2πSz

n |ψ〉 = ei2πS |ψ〉, since |ψ〉 contains only spin-S states, and
ei2πSz

yields ±1 depending on whether S is integer or half-integer. Thus, the
equation for the overlap takes the form

z1 = ei2πl(S−M)z1. (1.50)

From that equation it is clear that l(S−M) = integer is a necessary condition
for the overlap z1 to be nonzero. Thus, for l(S −M) = half-odd-integer the
system is either gapless, or our assumption that Tl|ψ0〉 = |ψ0〉 is wrong.

The spin-S Heisenberg chain in its ground state corresponds to l = 1 and
M = 0. From the above theorem it follows that, if a spontaneous breaking of
the translational symmetry is excluded, a spin-S Heisenberg chain can only be
gapped if S is integer. We will come back to this result later in Sect. 1.6 since
it establishes also a connection to the phenomenon known as magnetization
plateau; actually, the integer spin chain ground state with the Haldane gap
is the simplest example of a magnetization plateau at M = 0.

1.3.3 The AKLT Model and Valence Bond Solid States

Although the large-S NLSM description allows one to get some basic un-
derstanding for the S = 1 chain, chains with low integer S exhibit several
important features which go beyond the large-S limit. These deficiencies are
to some extent filled by the additional insight obtained from the so-called va-
lence bond solid (VBS) models. The prototype of these models was proposed
by Aflleck, Kennedy, Lieb, and Tasaki [123] and is thus known as the AKLT
model. In the following we introduce this model and use it as a starting point
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to discuss the matrix product representation and an approximate treatment
of excitations in the Haldane chain.

Let us introduce the projector operator P J=2
12 which projects the states of

two S = 1 spins S1, S2 onto the subspace with the total spin J = 2. Consider
the Hamiltonian defined in terms of this projector:

H =
1
12

∑

i

{P (J=2)
i,i+1 − 8} =

∑

i

SiSi+1 +
1
3
(SiSi+1)2. (1.51)

Obviously, the minimum energy is obtained for a state with the property that
the total spin of any two neighboring spins is never equal to 2. Such a state
can be constructed by regarding every S = 1 as a composite object consisting
of two symmetrized S = 1

2 spins, and linking each S = 1
2 spin to its neighbor

from the nearest site with a singlet bond, see Fig. 1.9a. Remarkably, uniform
VBS states can be constructed in the same way for any integer S (Fig. 1.9b),
while for half-integer S only dimerized VBS states are possible. For periodic
boundary conditions the ground state is unique and is a global singlet, while
for open boundary conditions there are two free 1

2 spins at the open ends of
the chain, so that the ground state is fourfold degenerate and consists of a
singlet and of the so-called Kennedy triplet [124].

(a) (b)

Fig. 1.9. Valence bond solid (VBS) wave functions: (a) the ground state (1.52) of
the S = 1 AKLT model (1.51); (b) S = 2 VBS state

The AKLT model (1.51), which can be obviously generalized for higher
S, serves as a good example visualizing the nature of the Haldane phase.

The S = 1 VBS state, taken as a variational trial wave function, yields
for the Haldane chain the ground state energy per spin E = − 4

3 , rather close
to the numerically obtained value E � −1.40 [102].

Though the construction looks simple, it seems to be rather a nontrivial
task to write down the VBS wave function in terms of the original spin
states. There exists, however, a simple and elegant representation of VBS
wavefunctions in the language of matrix product states [125,126]. The AKLT
wave function can be presented in the following form:

|Ψ〉 = Tr(g1g2 · · · gN ), gAKLT
n =

1√
3

(
−|0〉n −

√
2|−〉n√

2|+〉n |0〉n

)
, (1.52)

where |µ〉n denotes the state of the spin S = 1 at site n with Sz = µ.
Indeed, it is easy to show that a product of any two matrices g1g2 does

not contain states with the total spin J = 2, which is exactly the property
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of the AKLT wave function. The trace corresponds to periodic boundary
conditions, and the four matrix elements of Ω = g1g2 · · · gN are nothing but
the four degenerate ground states of the open chain. A similar representation
exists for higher-S VBS states [127].

The matrix product (MP) formulation is remarkable since it allows to
write complicated states in a factorized (product) form. Technically, averages
over VBS states can be easily calculated using the transfer matrix technique
[127], e.g., for any operator L̂12 involving two neighboring spins one has

〈Ψ |L̂12|Ψ〉 = Tr(GN−2M12) ,

G = g∗
i ⊗ gi, M12 = (g1g2)∗ ⊗ L̂12(g1g2) , (1.53)

where ⊗ denotes the direct (tensor) product of matrices.
The correlation function of the AKLT model for an infinite chain is ex-

plicitly given by

〈Sα
nS

β
n′〉 = (−1)|n−n′|(4/3) e−|n−n′| ln 3δαβ ; (1.54)

for finite chains the free spins at the edges give an additional contribution
which also decays exponentially when moving away from the boundary [128].
All correlations decay purely exponentially, which is a peculiarity of the
AKLT model connected to the fact that it is a special disorder point where
the so-called dimensional reduction of the generic D = 2 Ornstein-Zernike
behavior (1.49) takes place [129]. The correlation length of the AKLT mo-
del ξ = 1/ ln 3 is very short in comparison with ξ � 6.0 in the Haldane
chain, [102]. This means, that despite the qualitative similarity to the gro-
und state of the S = 1 Haldane chain, quantitatively the AKLT state is
rather far from it. However, one may say that S = 1 Haldane chain and the
AKLT model are in the same phase, i.e., in any reasonable phase space the
points corresponding to those two models can be connected by a line which
does not cross any phase boundary. Respectively, those two models can be
said to belong to the same universality class in the sense that corresponding
quantum phase transitions caused by changing some parameter in the gene-
ral phase space occur at the same phase boundary and thus have the same
universal behavior.

The MP representation makes it easy to see the presence of the string or-
der in the VBS wave function. Since the elementary matrix gi can be rewritten
through the Pauli matrices σµ as

gAKLT
i = 1/

√
3(σ+|−〉i + σ−|+〉i − σ0|0〉i) , (1.55)

it is clear that, since (σ±)2 = 0 and σ+σ0 = −σ+, the ground state contains
only such spin states where the |+〉 must be followed by a |−〉, with an
arbitrary number of |0〉 in between. The “diluted AF order” is thus perfect
in the AKLT model. The AKLT state is rotationally invariant, and states |0〉,
|+〉 and |−〉 appear with the equal probability of 1/3. Nonzero contribution
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to the correlator (1.42) comes only from states with no |0〉 at sites n and n′,
so that the value OAKLT

1 = 4/9, which is the maximal value for a rotational
invariant state, to be compared with OHald

1 � 0.37 for the Haldane chain
[104].

The hidden order, together with the fourfold degeneracy of the ground
state for open chain, is a characteristic feature of the Haldane phase for S = 1
chains. This provides an elegant way of detecting the Haldane state [130]:
doping a S = 1 Haldane chain with Cu2+ ions having spin 1

2 , one breaks
it effectively into finite pieces, and effectively free S = 1

2 spins are created
at the edges adjacent to the impurity site. The resulting three spins 1

2 are
bound together by a weak host-impurity interaction, forming a loose cluster
practically decoupled from the bulk of the chain. In applied magnetic field,
resonant transitions between the cluster levels should be visible inside the
Haldane gap. Such a response was successfully observed in the ESR experi-
ment on Cu-doped NENP [130], confirming that the system is in the Haldane
phase.

Excitations in the AKLT Chain

The lowest excitation above the singlet ground state of the Haldane chain is
known to be a massive triplet with the total spin equal to 1. Creating such
an excitation may be visualized as replacing one of the singlet links in the
AKLT state by a triplet one. The resulting trial wave function for a triplet
excitation with Sz = µ at site n can be written down as follows:

|µ, n〉 = Tr{gAKLT
1 gAKLT

2 . . . gAKLT
n−1 (g1µ

n )gAKLT
n+1 . . . gAKLT

N }, (1.56)

where g(1µ) is in the most general case defined as

g(1µ) = aσµ · gAKLT + bgAKLT · σµ, (1.57)

the ratio a/b being a free parameter. States |µ, n〉 with different n are ge-
nerally not orthogonal. However, one may achieve such an orthogonality by
setting a/b = 3 [131].

Those states are in fact solitons in the string order [109–112]. One can
straightforwardly check that in the soliton state |r, n〉 the string order corre-
lators Or′

1 (l, l′) with r′ �= r change sign when n gets inside the (l, l′) interval,
while Or

1(l, l
′) remains insensitive to the presence of the soliton.The variatio-

nal dispersion relation for such a soliton takes an especially simple form for
the AKLT model [132]:

ε(k) =
10
27

(5 + 3 cos k). (1.58)

The one-particle gap ∆ = ε(k = π) is at k = π, and the overall structure of
excitation spectrum is qualitatively very similar to that of the Haldane chain.
Numerical analysis [103, 112] confirms that the above picture of excitations,
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constructed for the AKLT model, remains qualitatively correct in case of the
S = 1 Haldane chain as well, also in anisotropic case [133].

The difference between the ground states of the Haldane chain and of
the AKLT model may be visualized as follows: the Haldane chain contains a
finite number of bound pairs of solitons with opposite spin, which reduce the
hidden order and renormalize the excitation energy [134].

1.3.4 Spin Chains with Alternating and Frustrated Exchange

If the exchange integral is allowed to alternate along the chain, i.e., Jn =
J [1 + (−1)nδ], the NLSM analysis shows [135] that the topological term
(1.48) gets multiplied by (1 − δ). The theory is gapless if 2πS(1 − δ) = π
mod(2π), which yields 2S critical points if δ ∈ [−1; 1]. The same conclusion
is supported by the VBS approach which allows exactly 2S + 1 different
dimerized VBS states for a given S, so that there are 2S transitions between
them. Numerically, such transitions were observed in chains with S up to
2 [136].

Recently, a dimerized S = 1 VBS state was detected in the ESR expe-
riment on Zn-doped NTENP [137]. The idea of the experiment was similar
to that of detecting the Haldane state: due to the dimerized nature of the
ground state, effective free S = 1 spins emerge on doping at the edges ad-
jacent to the impurities, and the corresponding resonance response can be
measured.

If one adds a small frustrating next-nearest-neighbor interaction j, the 2S
critical points can be expected to continue as critical lines in the (j, δ) plane.
In the strong frustration region, however, little is known, except for the cases
S = 1

2 and S = 1.
In the S = 1

2 case there is a single critical line δc = 0 extending up to the
point j � 0.24, and continuing till j = ∞ as a first-order line [65]. For S = 1
there are two symmetrical lines δ = ±δc(j), with δc(0) � 0.25 [136], which,
according to the numerical results [138, 139], extend up to about j � 0.2
as second-order transition lines, continue afterwards as first-order ones and
cross the symmetry line δ = 0 at a finite j � 0.75. The symmetry line (i.e., a
frustrated chain without alternation) was studied in [131,140] and the point
jc � 0.75 was identified as that of the first-order “connectivity transition”
from the Haldane phase to the so-called “double Haldane” phase. The string
order (1.42) disappears discontinuously at j > jc [140], signaling a breakdown
of the Haldane phase (Fig. 1.10b).

The “double Haldane” phase at j > jc can be visualized (see Fig. 1.10a)
as a VBS state consisting of two interconnected AKLT chains [131]; the cor-
responding order parameter can be written as

Oα
2 (n, n′) =

〈
−Sα

n−1S
α
n eiπ

∑n′−1
l=n+1 Sα

l Sα
n′Sα

n′+1

〉
, α = x, y, z, (1.59)

and turns out to emerge discontinuously at j > jc (Fig. 1.10b). It is, however,
not clear at present how the “double Haldane” phase is connected to the
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Fig. 1.10. (a) visual interpretation of the “double-Haldane” phase; (b) behavior
of string order parameters (1.42) and (1.59) on the frustration j [131]

dimerized phase: the string order (1.59) was found to survive in the dimerized
phase as well [141].

1.3.5 Frustrated Chains with Anisotropy: Quantum Chiral Phases

In recent few years, the problem of possible nontrivial ordering in frustrated
quantum spin chains with easy-plane anisotropy has attracted considerable
attention [142–146]. The simplest model of this type is described by the Ha-
miltonian:

H = J
∑

n

{(SnSn+1)∆ + j(SnSn+2)∆} , (1.60)

where (S1S2)∆ ≡ Sx
1S

x
2 + Sy

1S
y
2 + ∆Sz

1S
z
2 , and 0 < ∆ < 1 is the anisotropy

parameter.
In the classical ground state of (1.60) spins always lie in the easy plane

(xy), i.e. in terms of angular variables θ, ϕ for the classical spins (Sx
n +

iSy
n = S sin θne

iϕn , Sz
n = cos θn) one has θ = π

2 . For j < 1
4 the alignment

of spins is antiferromagnetic, ϕn = ϕ0 + πn, and for j > 1
4 one obtains

an incommensurate helical structure with ϕn = ϕ0 ± (π − λ0)n, where λ0 =
arccos(1/4j), and the ± signs above correspond to the two possible chiralities
of the helix.

The classical isotropic (∆ = 1) system has for j > 1
4 three massless

modes with wave vectors q = 0, q = ±δ, where δ ≡ π − λ0 is the pitch
of the helix. The effective field theory for the isotropic case is the so-called
SO(3) nonlinear sigma model, with the order parameter described by the
local rotation matrix [148,149].

Quantum fluctuations make the long-range helical order impossible in one
dimension, since it would imply a spontaneous breaking of the continuous in-
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plane symmetry; in contrast to that, the existence of the finite vector chirality

κn = 〈(Sn × Sn+1)〉 (1.61)

is not prohibited by the Coleman theorem, as first noticed by Villain [151]. Po-
sitive (negative) chirality means, that spins on average prefer to rotate to the
left (right), respectively, thus the discrete symmetry between left and right
is spontaneously broken in the chiral phase. Nersesyan et al. [142] predicted
the existence of a gapless chiral phase for S = 1

2 in the j � 1 limit, using the
bosonization technique combined with a subsequent mean-field-type decou-
pling procedure. Except having the chiral order, this phase is characterized
by the power-law decaying incommensurate in-plane spin correlations of the
form 〈S+

0 S
−
n 〉 ∝ n−ηeiQn, where Q is very close to π in the limit j � 1, and

η = 1
4 for S = 1

2 [142].
Early attempts [143, 145] to find this chiral gapless phase in numerical

calculations for S = 1
2 were unsuccessful. At the same time, to much of

surprise, DMRG studies for frustrated S = 1 chain [145,146] have shown the
presence of two different types of chiral phases, gapped and gapless.

The model (1.60) was studied analytically in the large-S limit and for j
close to the classical Lifshitz point 1

4 by mapping it to a planar helimagnet
[147, 152]. This mapping is based on the fact that in presence of anisotropy
the modes with q = ±δ acquire a finite mass and can be integrated out. It
was shown that the existence of two types of chiral phases is not specific for
S = 1, but is a generic large-S feature for integer S [147]. The predicted large-
S phase diagram for integer S is shown in Fig. 1.11. Later large-S study [152]
has shown that the chiral gapped phase should be absent for half-integer S,
due to the effect of the topological term.

In subsequent works, chiral phases were numerically found for S = 1
2 ,

[150,153] as well as for S = 3
2 and S = 2 [150]; the resulting phase diagrams
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∆
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Fig. 1.11. Predicted phase diagram of frustrated anisotropic chains with integer
S in the large-S approximation, according to [147]
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are shown in Fig. 1.12 and one can see that there is a qualitative agreement
with the predictions of the large-S theory. The predicted dependence of the
critical exponent η on j in the vicinity of the transition into a chiral phase, η ∝

1
S
√

j−1/4
→ 1

4 at j → jc, also agrees qualitatively with the numerical results

of [150]. However, the large-S theory is unable to describe the transition into
the dimerized phase for half-integer S.
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Fig. 1.12. Phase diagrams of frustrated anisotropic chains with S = 1
2 , 1, 3

2 and
2, obtained by means of DMRG [150]

Another theoretical approach using bosonization [154] suggests that the
phase diagram for integer and half-integer S should be very similar, with the
only difference that the Haldane phase gets replaced by the dimerized phase
in the case of half-integer S. This is in contradiction with the recent numerical
results [150] indicating that the chiral gapped phase is absent for half-integer
S. On the other hand, the bosonization prediction of the asymptotic value of
the critical exponent, η → 1/(8S) at j →∞, agrees well with the numerical
data.

There are indications [155] that chiral order may have been found expe-
rimentally in the 1D molecular magnet Gd(hfac)3NITiPr.



1 One-Dimensional Magnetism 37

1.4 S = 1
2 Heisenberg Ladders

Spin ladders consist of two or more coupled spin chains and thus represent an
intermediate position between one- and two-dimensional systems. The pro-
totype of a spin ladder is shown in Fig. 1.13a and consists of two spin chains
(legs) with an additional exchange coupling between spins on equivalent po-
sitions on the upper and lower leg (i.e. on rungs). The interest in spin ladders
started with the observation that this ladder with standard geometry and
antiferromagnetic couplings is a spin liquid with a singlet ground state and a
Haldane type energy gap even for S = 1/2 [156]. More generally, spin ladders
with an arbitrary number of antiferromagnetically coupled chains and ar-
bitrary spin value S extend the class of spin liquids: For half-odd-integer spin
and an odd number of legs they are gapless, whereas they exhibit a Haldane
type energy gap otherwise (for a review of the early phase of spin ladder re-
search see [11] and for a review of experiments and materials see [157]). Spin
ladders are realized in a number of compounds and interest in these materials
was in particular stimulated by the hope to find a new class of high tempera-
ture superconductors. However, so far only two SrCuO spin ladder materials
were found which become superconducting under high pressure: Tc is about
10 K for Sr0.4Ca13.6Cu24O41 at 3 GPa pressure [158]. Nevertheless, theoreti-
cal interest continued to be strong since generalized spin ladder models cover
a wide range of interesting phenomena in quantum spin systems and on the
other hand allow to study in a reduced geometry interacting plaquettes of
quantum spins identical to the CuO2 plaquettes which are the basic building
blocks of HTSC’s. In this section we will concentrate on reviewing the pro-
perties of spin ladder models which connect seemingly disjunct quantum spin
models.

JR

JL n,2

n,1

(a) JL

J1 J2

n,2

n,1

(b)

Fig. 1.13. (a) generic spin ladder with only “leg” and “rung” exchange interactions
JL, JR; (b) zigzag spin ladder

1.4.1 Quantum Phases of Two-Leg S = 1/2 Ladders

The prototype of quantum spin ladders has the geometry shown in Fig. 1.13a
and is defined by the Hamiltonian

H =
∑

n

∑

α=1,2

JLSn,α · Sn+1,α +
∑

n

JR Sn,1 · Sn,2 (1.62)
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with exchange energies JL along the legs and JR on rungs. The ‘standard’
ladder results for equal antiferromagnetic exchange JL = JR = J > 0. Whe-
reas the corresponding classical system has an ordered ground state of the
Néel type the quantum system is a spin liquid with short range spin corre-
lations, ξ ≈ 3.2 (in units of the spacing between rungs) and an energy gap
∆ ≈ 0.5JR [159,160] at wave vector π. Regarding the similarity to the Hald-
ane chain indicated by these properties it was therefore tempting to speculate
that the ladder gap is nothing but the Haldane gap of a microscopically so-
mewhat more complicated system. In order to discuss this speculation we
consider the system of (1.62) with varying ratio JR/JL. In the strong cou-
pling limit with JR/JL positive and large, the ladder reduces to a system
of noninteracting dimers with the dimer excitation gap ∆dimer = JR. With
increasing JL the gap decreases to become ∆ ≈ 0.4JR in the weak coupling
limit [161,162]. On the other hand, for large negative values, the formation of
S = 1 units on rungs is favored and the system approaches an antiferroma-
gnetic S = 1 chain (with effective exchange 1

2JL). However, these two simple
and apparently similar limiting cases are separated by the origin, JR = 0,
corresponding to the gapless case of two independent S = 1/2 chains. The
relation between ladder gap and Haldane gap therefore does not become clear
by this simple procedure (see the early discussion by Hida [163]).

Before we approach this point in more detail, we shortly consider the
ladder Hamiltonian (1.62) for the alternative case of ferromagnetically inter-
acting legs, JL < 0: The classical ground state then is the state of two chains
with long range ferromagnetic order, oriented antiparallel to each other. One
would speculate that this ferromagnetic counterpart of the standard ladder is
less susceptible to quantum fluctuations since without rung interactions the
ground state for S = 1/2 is identical to the classical ground state. This is, ho-
wever, not the case: An arbitrarily small amount of (antiferromagnetic) rung
exchange leads to the opening up of a gap as shown by analytical [164–166]
and numerical [167] methods. The situation is somewhat more involved (and
interesting) when the exchange interactions are anisotropic: up to some fi-
nite rung coupling the classical ground state survives for an anisotropy of
the Ising-type in the leg interactions and a spin liquid ground state of the
Luttinger liquid type appears for leg anisotropy of the XY type [165,166].

The relation between Haldane and ladder gap can be clarified when the
somewhat generalized model for a S = 1/2 ladder shown in Fig. 1.13b, with
the Hamiltonian

H =
∑

n

∑

α=1,2

JLSn,α · Sn+1,α +
∑

n

(J1 Sn,1 · Sn,2 + J2 Sn,2 · Sn+1,1)

(1.63)

is studied. This model is mostly known under the name of zigzag ladder, i.e.
two Heisenberg chains with zigzag interactions, but it can be viewed alterna-
tively as a chain with alternating exchange J1, J2 and NNN interactions JL. If
either J1 or J2 vanishes the Hamiltonian reduces to the ladder geometry with
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two legs and rungs. For J1 = J2, the model reduces to the Heisenberg chain
with NNN interactions already discussed in Sect. 1.2, including the quantum
phase transition from the Heisenberg chain universality class to the (twofold
degenerate and gapped) dimer crystal ground state at J1 = J2 = α−1

c JL
(with αc � 0.2411) and the Majumdar-Ghosh point J1 = J2 = 2JL with two
degenerate ground states, see Sect. 1.2.6 above. Upon including alternation,
J1 �= J2, the Majumdar-Ghosh point extends into two Shastry-Sutherland
lines [168], J2 = 1

2 for J1 > 1
2 and J1 = 1

2 for J2 > 1
2 : If the exchange

coupling along the chain alternates between J1 on even bonds and J2 < J1
on odd bonds, |0I〉 continues to be the ground state for J2 = 1

2 as long as
J2 > −1.

It is instructive to study this more general model introduced by White
[169], for several reasons: The ground state phase diagram for various com-
binations of the variables J1, J2, JL allows to discuss the relations between
a number of seemingly different models by continuous deformation of the
interaction parameters [169–171] and it serves as an instructive example for
quantum phase transitions depending on the parameters in interaction space.
Moreover it allows to make contact to real quasi 1D materials by showing
the position in this diagram in rough correspondence to their interaction
parameters.

In the following we present and discuss three ground state phase diagrams,
in order to cover (partly overlapping) the full phase space in the variables
J1, J2, JL. Evidently the phase diagrams are symmetric under exchange of J1
and J2 and we will discuss only one of the two possible cases.

(a) Figure 1.14a shows the phase diagram J2 vs J1, assuming a finite value
of JL > 0 as energy unit. It has been established by various methods that
the only phase transition lines occur at J2 = −2J1/(2+J1) (transition to the
ferromagnetically ordered ground state) and along the line J1 = J2 > −4.
This line is a line of first order quantum phase transitions for 0 < J1 = J2 <
α−1

c and of second order quantum phase transitions for J1 = J2 > α−1
c (in

the following we use finite value of JL > 0 as energy unit and restrict to the
J1 > J2 half of the plane).

The origin J1 = J2 = 0 corresponds to the gapless case of two nonin-
teracting Heisenberg chains, whereas on the line J1 = J2 > 0 one has one
S = 1/2 Heisenberg chain with NNN interaction. This line separates two
distinct gapped regimes, each containing the limit of noninteracting dimers
J1 →∞ resp. J2 →∞, the standard ladder, an effective S = 1 chain and the
Shastry-Sutherland (SS) line.

The concept of string order can be extended to ladders [172, 173] intro-
ducing two complementary string order parameters in the J1 − J2 phase
diagram:

Oα
lad,1(n,m) =
〈
− (Sα

n,1 + Sα
n,2) e

iπ
∑m−1

j=n (Sα
j,1+Sα

j,2) (Sα
m,1 + Sα

m,2)
〉
, (1.64)
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Oα
lad,2(n,m) =
〈
− (Sα

n,1 + Sα
n+1,2) e

iπ
∑m−1

j=n (Sα
j,1+Sα

j+1,2) (Sα
m,1 + Sα

m+1,2)
〉
. (1.65)

For J1 > J2 (phase D2) singlets are found preferably on the rungs and the
remaining antiferromagnetic leg exchange then leads to a tendency towards
triplets, i.e. S = 1 units on diagonals. This implies a vanishing value for
Olad,1 whereas a finite string order parameter Olad,2 develops. This type of
string order characterizes the standard ladder (J1 = 1, J2 = 0) and becomes
identical with the S = 1 chain string order parameter for J2 → −∞. The
complementary situation is true for J1 < J2: rungs and diagonals as well as
Olad,1 and Olad,2 exchange their roles. In the field theoretic representation of
the generalized ladder [13,174,175]Olad,1 and Olad,2 correspond to Ising order
resp. disorder parameters. Both order parameters become zero on the line
J1 = J2 for J1 = J2 > α−1

c (gapless line) whereas they change discontinuously
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following the discontinuous change in ground state when the line J1 = J2 for
J1 = J2 < α−1

c (line with two degenerate ground states) is crossed.
Thus it is possible to deform various gapped models, noninteracting di-

mers, the standard ladder and the S = 1 Haldane chain, continuously into
each other without closing the gap if one stays on the same side of the line
J1 = J2. Then the ladder gap evolves into the dimer gap when the rung
coupling increases to infinity and the dimer gap evolves into the Haldane
gap when two dimers on neighboring rungs interact ferromagnetically via J2,
forming S = 1 units on diagonals. However, when the standard ladder is de-
formed into a S = 1 chain by changing rung dimers from antiferromagnetic
to strongly ferromagnetic, one moves to a different symmetry class since the
line J1 = J2 is crossed.

For ferromagnetic couplings J1, J2 < 0 there is a regime of disorder due
to competing interactions before ferromagnetic order sets in. This applies
in particular to the limit −4 < J1 = J2 < 0, a ferromagnetic chain with
AF NNN exchange. It is usually taken for granted that the corresponding
ground state of this frustrated chain is in an incommensurate phase and
gapless; however, a recent interesting speculation [176] suggests the presence
of a tiny but finite gap on some part of this line.

(b) In Fig. 1.14b the phase diagram in the variables J2 vs JL is presented,
assuming a finite value of J1 > 0 as energy unit. This choice of variables
displays most clearly the neighborhood of the dimer point (the origin in this
presentation) and the situation when ferromagnetic coupling is considered on
the legs and on one type of inter-leg connections. The dividing line between
the two dimer/Haldane phases D1 and D2 appears now as the line J2 = 1
with the end of the gapless phase at JL = αc and the Majumdar-Ghosh
point at JL = 1

2 . The gap on this line starts exponentially small from zero
at the Kosterlitz Thouless transition at JL = αc, goes through a maximum
at JL ≈ 0.6 and drops to zero exponentially for JL → ∞ (two decoupled
chains) [149,177].

The Shastry-Sutherland (SS) lines JL = 1
2J2 (in D2) resp. JL = 1

2 in
D1 are to be considered as disorder lines where spin-spin correlations in
real space become incommensurate [178, 179]. The precise properties in the
incommensurate regime beyond these lines have not been fully investigated
up to now. The SS line extends into the range of ferromagnetic couplings
and (in D2) ends at JL = 1

2J2 = −1. This point lies on the boundary of
the ferromagnetic phase, J2 = −2JL/(1 + 2JL). This boundary is obtained
from the instability of the ferromagnetic state against spin wave formation.
There are indications that ground states on this line are highly degenerate:
states with energies identical to the ferromagnetic ground state are explicitly
known for J1 = JL = −1 (end of the SS line, dimers on J1 bonds), for
J1 = JL = − 3

2 (a matrix product ground state, see Sect. 1.4.2) and for a
family of states which exhibit double chiral order as studied in ref. [180].

As mentioned before, the ladder is gapless on the line J2 = 1, JL < 0
(antiferromagnetic Heisenberg chain with ferromagnetic NNN exchange), but
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an infinitesimal alternation, J2 �= 1 drives it into the gapless phase, smoothly
connected to the Haldane/dimer phase. At strongly negative values of J1 the
phase diagram of Fig. 1.14b shows the second order phase transition from
the ferromagnetic to the antiferromagnetic S = 1 chain at JL = − 1

2 .
(c) In Fig. 1.14c the phase diagram in the same variables J2 vs JL is shown,

but assuming a finite ferromagnetic value of |J1| = −J1 > 0 as energy unit.
This choice of variables allows to discuss the situation for two ferromagnetic
couplings. The origin is identified as the limit of noninteracting spins 1 and
the neighborhood of the origin covers both the ferro- as the antiferromagnetic
S = 1 chain, depending on the direction in parameter space.

1.4.2 Matrix Product Representation
for the Two Leg S = 1/2 Ladder

The matrix product representation introduced for the S = 1 chain above can
be extended to ladders and is found to be a powerful approach to describe
spin ladder ground states in the regime covered by the J1-J2 phase space of
the model of (1.63). It formulates possible singlet ground states as a product
of matrices gn referring to a single rung n, |..〉 =

∏
n gn. Matrices gn as used

in Sect. 1.3.3 are generalized to include the possibility of singlets on a rung
and read [170]:

gn(u) = u1̂ |s〉n + v(
1√
2
σ−|t−〉n −

1√
2
σ+|t+〉n + σz|t0〉n)

=
(
u|s〉+ v|t0〉 −

√
2v|t+〉√

2v|t−〉 u|s〉 − v|t0〉

)
. (1.66)

(Note that the triplet part of (1.66) is equivalent to (1.55) up to a unitary
transformation; here we keep the original nonation of [170].) We now show
that the ground states of the Majumdar-Ghosh chain can be written in the
form of a matrix product. This is trivially true for |0〉II which is obtained for
u = 1, v = 0. It is also true for the state |0〉I if it is formulated in terms of
the complementary spin pairs [2, 3], [4, 5] . . . used in |0II〉: We start from the
representation of a singlet as in (1.34, 1.35) and write

|0〉I =
1

2N/2

∑

{..s,s′,t,...}
· · ·χ2p−1(s) εs,s′

χ2p(s′)

× χ2p+1(t) εt,t
′
χ2p+2(t′) χ2p+3(r) εr,r′

χ2p+4(r′) · · · = Tr
(∏

p

gp

)

after defining the matrix with state valued elements

gp(s, t) :=
1√
2

∑

s′
χ2p(s) χ2p+1(s′) εs

′,t
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to replace the singlet, (1.34) as new unit. The explicit form for g is

1√
2




| ↑, ↓〉 −| ↑, ↑〉

| ↓, ↓〉 −| ↓, ↑〉





which is identical to (1.66) with u = v = 1/
√

2.

1.4.3 Matrix Product States: General Formulation

The above construction of the matrix product ansatz for S = 1
2 ladders can be

generalized for arbitrary 1D spin systems [181]. Let {|γSµ〉} be the complete
set of the spin states of the elementary cell of a given 1D spin system, classified
according to the total spin S, its z-projection µ and an (arbitrary) additional
quantum number γ. Define the object g as follows:

g(jm) =
∑

λq,Sµ

cγ 〈jm|λq, Sµ〉 T̂λq|γSµ〉 , (1.67)

where 〈jm|λq, Sµ〉 are the standard Clebsch-Gordan coefficients, cγ are free
c-number parameters, and T̂λq are irreducible tensor operators acting in some
auxiliary space, which transform under rotations according to the Dλ repre-
sentation. Then it is clear that g transforms according to Dj and thus can be
assigned “hyperspin” quantum numbers jm. Then, building on those elemen-
tary objects gi (where i denotes the i-th unit cell) one can construct wave
functions with certain total spin almost in the same way as from usual spin
states. For instance, for a quantum 1D ferrimagnet with the excess spin j per
unit cell the state with the total spin and its z-projection both equal to Nj
would have the form

|ΨNj,Nj〉 = TrM(ΩN ), ΩN = g
(jj)
1 · g(jj)

2 · · · g(jj)
N , (1.68)

where the trace sign denotes an appropriate trace taken over the auxiliary
space. The choice of the auxiliary space M determines the specific matrix
representation of the operators Tλq; the space M can be always chosen in a
form of a suitable decomposition into multipletsM =

∑
αJ ⊕MαJ , and then

the structure of the matrix representation is dictated by the Wigner-Eckart
theorem:

〈αJM |Tλq|α′J ′M ′〉 = T̃λ,αJ,α′J′ 〈JM |λq, J ′M ′〉 . (1.69)

The reduced matrix elements T̃λ,αJ,α′J′ and the coefficients cγ are free para-
meters.

Matrix product states (MPS) are particularly remarkable because the ma-
trices g1g2, g1g2g3, etc. all have the same structure (1.67) if they are construc-
ted from the “highest weight” components g(j,m=j). This self-similarity is ac-
tually an indication of the deep connection of singlet MPS and the density-
matrix renormalization group technique, as first pointed out by Ostlund and
Römmer [182] and developed later in works of Sierra et al. [183–185].
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A Few Examples

In the simplest case of a two-dimensional M = {|J = 1
2 ,M〉}, the allowed

values of λ are 0 and 1, and T 1q are just proportional to the usual Pauli
matrices σq, and T 00 is proportional to the unit matrix. If one wants the
wavefunction to be a global singlet, the simplest way to achieve that is to
have the construction (1.68) with j = 0. Then, for the case of S = 1 chain
with one spin in a unit cell, one obtains exactly the formula (1.55), with no
free parameters.

Higher-S AKLT-type VBS states can be also easily represented in the
matrix product form. In this case one has to choose M = {|S/2,M〉}, then
the only possible value of λ is S, and, taking into account that 〈00|Sq, Sµ〉 =
δq,−µ(−1)S−µ, we obtain

gS =
∑

µ

(−1)S−µTS,−µ|S, µ〉.

For a generic quantum ferrimagnet, i.e., a chain of alternating spins 1 and
1
2 , coupled by antiferromagnetic nearest-neighbor exchange, the elementary
unit contains now two spins. The ground state has the total spin 1

2 per unit
cell, then one would want to construct the elementary matrix g1/2,1/2. If M
is still two-dimensional, the elementary matrix has according to (1.67) the
following form:

g =
(

(u− v)|↑〉 − |12 〉
√

3| 32 〉
−2v|↓〉 − | − 1

2 〉 (u+ v)|↑〉+ | 12 〉

)
, (1.70)

where |↑〉, |↓〉 and | ± 1
2 〉, | ±

3
2 〉 are the cell states with the total spin λ = 1

2
and λ = 3

2 , respectively.

1.4.4 Excitations in Two-Leg S=1/2 Ladders

The excitation spectrum in this simplest ladder type spin liquid is similar to
that of a Haldane chain: The lowest excitation is a triplet band with mini-
mum energy at q = π and a continuum at q = 0. Since the ground state is
a disordered singlet, a spin wave approach (which would result in a gapless
spectrum) is inappropriate. In different regimes of the space of coupling con-
stants, different methods have been developed to deal approximately with
the low-lying excitations:

Weak Coupling Regime

In the weak coupling regime, close to two independent chains, the bosoniza-
tion approach can be applied to decide whether the excitation is gapless or
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gapped. The standard situation is that the coupling between legs is relevant
and a gap develops for arbitrarily small coupling. Some examples are: an-
tiferromagnetic interactions in the standard rung geometry [177] (the gap
is linear in JR, the numerical result is ∆ ≈ 0.4JR [162]), antiferromagnetic
interactions in the zigzag geometry [186], and antiferromagnetic interactions
for isotropic ferromagnetic legs [165]. The gapless (Luttinger liquid) regime
of the decoupled chains can survive, e.g. for ferromagnetic legs with XY-type
anisotropy and antiferromagnetic coupling [166].

Strong Coupling Regime

In the strong coupling regime, close to the dimer limit the lowest elementary
excitation develops from the excited triplet state of a dimer localized on one
of the rungs which starts propagating due to the residual interactions. For
the Hamiltonian of (1.63) the dispersion to first order is (we choose J1 � J2
to be the strong dimer interaction)

ω(q) = J1 +
(
JL −

1
2
J2

)
cos q + J1

(3
4
(αL −

1
2
α2)2

+−1
4
α2

2(1 + cos q)− 1
4
(αL −

1
2
α2)2 cos 2q . . .

)
(1.71)

with αL = JL/J1 and α2 = J2/J1. The excitation gap is at either q = 0 (for
J2 > 2JL in the lowest order, alternating AF chain type spectrum) or q = π
(J2 < 2JL, ladder type spectrum). For a finite regime in the space of coupling
constants an expansion in the dimer-dimer couplings leads to converging
expressions for the low-energy frequencies. Expansions have now been carried
out up to 14th order by the methods of cluster expansion [68, 187, 188] and
are convergent even close to the isotropic point.

We note two curiosities: In a small but finite transition regime, the mi-
nimum of the dispersion curve changes continuously from q = 0 to q = π
[187,189]; on the Shastry-Sutherland line, αL = α2/2 the energy of the mode
at q = π is known exactly, ω(q = π) = J1.

For nearly Heisenberg chains with NNN interaction and small alternation
dimer series expansions have been used extensively to investigate further
details of the spectra in e.g. CuGeO3 [68]. Bound states for the standard spin
ladder have been calculated to high order [190] and used to describe optically
observed two-magnon states in (La,Ca)14Cu24O41 [191].

The strong coupling approach has also been applied to describe interacting
dimer materials such as KCuCl3, TlCuCl3 [192,193] with 3D interactions and
(C4H12N2)Cu2Cl6 (= PHCC) [194] with 2D interactions. These interactions
are quantitatively important but not strong enough to close the spin gap
and to drive the system into the 3D ordered state. The dimer expansions are
much more demanding than in 1D, but nevertheless were done successfully
up to 6th order [195,196].
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Bond Boson Operator Approach

This approach makes use of the representation of spin operators in terms of
the so-called bond bosons [197]. On each ladder rung, one may introduce four
bosonic operators s, ta (a ∈ (x, y, z)) which correspond to creation of the
singlet state |s〉 and three triplet states |ta〉 given by

|s〉 =
1√
2

(
| ↑↓〉 − | ↓↑〉

)
, |tz〉 =

1√
2

(
| ↑↓〉+ | ↓↑〉

)
, (1.72)

|tx〉 = − 1√
2

(
| ↑↑〉 − | ↓↓〉

)
, |ty〉 =

i√
2

(
| ↑↑〉+ | ↓↓〉

)
,

Then the rung spin-1
2 operators S1,2 can be expressed through the bond

bosons as

S1,2 = ±1
2
(s†t + t†s)− 1

2
i(t† × t). (1.73)

One may check that the above representation satisfies all necessary commu-
tation relations, if the following local constraint is assumed to hold:

s†s+ t† · t = 1, (1.74)

which implies that the bond bosons are ‘hardcore’ (no two bosons are allowed
to occupy one bond), and, moreover, exactly one boson must be present at
each bond/rung. The constraint is easy to handle formally (e.g. in the path
integral formulation), but practically one can do that only at the mean-
field level [198], replacing the local constraint by a global one, i.e., (1.74) is
assumed to be true only on average, which introduces rather uncontrollable
approximations.

In a slightly different version of the bond boson approach [199], the va-
cuum state is introduced as corresponding to the state with fully condensed
s bosons. Then for spin operators one obtains the formulae of the form (1.73)
with s replaced by 1, and instead of the constraint (1.74) one has just a usual
hardcore constraint t† · t = 0, 1. This version is most useful in the limit of
weakly coupled dimers (e.g., J1 � J2, JL). Passing to the momentum repre-
sentation, one obtains on the quadratic level the effective Hamiltonian of the
form

Heff =
∑

ka

Akt
†
k,atk,a +

1
2
Bk(t†k,at

†
k,a + h.c.), (1.75)

where the amplitudes Ak, Bk are given by the expressions

Bk = (JL − J2/2) cos(k), Ak = J1 +B(k). (1.76)

Thus, neglecting the boson interaction, one obtains for the excitation energy
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ω(k) =

√

J2
1 + 2 J1

(
JL −

1
2
J2

)
cos k , (1.77)

which coincides with the corresponding RPA expression. Upon comparison
to the full systematic series of the perturbation theory, one can see that
(1.77) contains only the leading contributions at each cosine term cos(nk) of
the complete series and misses the remaining terms starting in the second
order [187].

The Hamiltonian (1.75) does not take into account any interaction bet-
ween the bosons. One may argue that the most important contribution to the
interaction comes from the hardcore constraint, which is effectively equivalent
to the infinite on-site repulsion U .

The effect of the local hardcore constraint can be handled using the so-
called Brueckner approximation as proposed by Kotov et al. [199]. In this
approach, one neglects the contribution of anomalous Green’s functions and
obtains in the limit U →∞ the vertex function Γaa′,ss′ = Γ (k, ω)(δasδa′s′ +
δas′δa′s), where k and �ω are respectively the total momentum and energy
of the incoming particles, with

1
Γ (k, ω)

= − 1
N

∑

q

ZqZk−qu
2
qu

2
k−q

ω −Ωq −Ωk−q
. (1.78)

The corresponding normal self-energy Σ(k, ω) is

Σ(k, ω) = (4/N)
∑

q

Zqv
2
qΓ (k + q, ω −Ωq) (1.79)

Here Ωk is the renormalized spectrum, which is found as a pole of the normal
Green function

G(k, ω) =
ω +Ak +Σ(−k,−ω)

(ω −Σ−)2 − (Ak +Σ+)2 +B2
k

, (1.80)

where Σ± ≡ 1
2

{
Σ(k, ω)±Σ(−k,−ω)

}
. The quasiparticle contribution to the

above Green function is given by

G(k, ω) =
Zku

2
k

ω −Ωk + iε
− Zkv

2
k

ω +Ωk − iε
(1.81)

which defines the renormalization factors Zk, the Bogoliubov coefficients uk,
vk and the spectrum Ωk as follows [131]:

Ωk = Σ− + Ek, Ek = {(Ak +Σ+)2 −B2
k}1/2,

u2
k =

1
2
{
1 + (Ak +Σ+)/Ek

}
, v2

k = u2
k − 1,

1
Zk

= 1− ∂Σ−
∂ω

− (Ak +Σ+)
Ek

∂Σ+

∂ω
(1.82)
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where Σ± and their derivatives are understood to be taken at ω = Ωk. The
system of equations (1.78), (1.79), (1.82) has to be solved self-consistently
with respect to Z and Σ. This approach is valid as long as the boson density
ρ = 3

N

∑
q Zqv

2
q remains small, ensuring that the contribution of anomalous

Green’s functions is irrelevant [199].
It should be remarked that the original expressions of Kotov et al. [199]

can be obtained from (1.82) as a particular case, assuming that Σ(k, ω) is
almost linear in ω in the frequency interval (−Ωk, Ωk); however, this lat-
ter assumption fails if one is far away from the phase transition, i.e. if the
resulting frequency ω is not small comparing to J1.

The above way of handling the hardcore constraint is quite general and
can be used in other problems as well, e.g., one can apply it to improve the
results of using the variational soliton-type ansatz (1.56), (1.57) for the S = 1
Haldane chain [131].

Bound Domain Wall Approach

The low-lying excited states in spin ladders in the dimer phase can be di-
scussed in a domain wall representation qualitatively rather similar to the
antiferromagnetic Ising chain in Sect. 2.3. In the limit of a twofold degene-
rate ground state (i.e. on the line J1 = J2 = J < α−1

c JL), excitations can
be discussed in terms of pairs of domain walls, mediating between these two
states [168].

Moving away from this line into the regime J1 �= J2 where bond strengths
alternate, a pair of domain walls feels a potential energy linear in the di-
stance between them since the two dimer configurations now have different
energies. As a consequence, all domain walls become bound with well defi-
ned dispersion ω(q). The frequency is lowest for the state originating from
the simplest pair of domain walls, obtained by exciting one dimer leading
to a triplet state. Thus one makes connection with the strong coupling limit
and establishes that the free domain wall continuum upon binding develops
into the sharp triplet excitation (‘magnon’) of the Haldane type. For a more
quantitative description of the transition between bound and unbound limits,
several variational formulations have been developed [189, 200, 201]. Of par-
ticular interest is the limit of JL � J1, i.e. weakly coupled gapless chains
which can be studied by bosonization techniques [186]. The zigzag structure
is responsible for a ”twist” interaction which induces incommensurabilities
in the spin correlations.

A particular simple example for a system with unbound domain walls
is the Majumdar-Ghosh state (J1 = J2 = 2JL = J in (1.63)); a domain
wall here means a transition from dimers on even bonds to dimers on odd
bonds or vice versa and implies the existence of a free spin 1/2, justifying
the name spinons for these excitations. For each free spin 1/2 the binding
energy of half a dimer bond is lost, producing an energy gap J/2 which
is lowered to a minimum value of J/4 at q = 0. For a chain with periodic
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boundary conditions the excitation spectrum consists of pairs of these spinons
which, owing to isotropy, bind into 4 degenerate states, a triplet and a singlet.
Because of the degeneracy of the two ground states these spinons can move
independently (completely analogous to the domain walls of the Ising chain
with small transverse interactions of Sect. 2.3), their energies therefore simply
add and lead to an excitation continuum. For a finite range of wave vectors
centered around q = π bound states with lower energies exist [168, 200].
The excited state with lowest energy, however, remains the triplet/singlet at
q = 0.

Moving away from the Majumdar-Ghosh point on the line with two de-
generate ground states towards the quantum phase transition at JL = Jαc,
the energy of the spinons diminishes until they become gapless at the phase
transition. Similar in spirit to the approach from the antiferromagnetic Ising
phase, this is another way to approach the gapless excitation spectrum of the
Heisenberg chain [202]. Since it preserves isotropy in spin space at each stage,
it nicely demonstrates the fourfold degeneracy of the spinon spectrum with
one triplet and one singlet, originating from the two independent spins 1/2.

1.4.5 Multileg Ladders

A natural generalization of the two-leg AF ladder is a general n-leg S = 1
2

ladder model with all antiferromagnetic rung and leg couplings. Except being
an interesting theoretical concept representing a system “in between” one
and two dimensions, this model is realized in strontium copper oxides of the
Srn−1Cun+1O2n family [11]. It turns out that the analogy between the regular
two-leg S = 1

2 ladder and the S = 1 Haldane chain can be pursued further,
and n-leg ladders with odd n are gapless, while ladders with even n exhibit a
nonzero spectral gap ∆ [203,204]. One may think of this effect as cancellation
of the topological terms coming from single S = 1

2 chains [174, 204–206].
The problem can be mapped to the nonlinear sigma model [206] with the
topological angle θ = πn and coupling constant g ∝ n−1, so that there is a
similarity between the n-leg S = 1

2 ladder and a single chain with S = n/2.
The gap ∆ ∝ e−2π/g vanishes exponentially in the limit n → ∞, recovering
the proper two-dimensional behavior.

Instructive numerical results are available for systems of up to 6 coupled
chains: improving earlier DMRG studies [159], calculations for standard n-
leg ladders using loop cluster algorithms [161,162] clearly show the decrease
of the gap for n even (from 0.502 J for n = 2 to 0.160 J for n = 4 and
0.055 J for n = 6). Further detailed results by this method were obtained for
correlation lengths and susceptibilities [162,207].
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1.5 Modified Spin Chains and Ladders

Until now, we have considered only models with purely Heisenberg (bilinear)
spin exchange. One should remember, however, that the Heisenberg Hamil-
tonian is only an approximation, and generally for S > 1/2 one has also
“non-Heisenberg” terms such as (Sl · Sl′)m,m = 2, . . . , 2S whose strength
depends on the Hund’s rule coupling. For S = 1

2 , exchange terms involving
four or more spins emerge in higher orders of the perturbation theory in the
Hubbard model. Those non-Heisenberg terms are interesting since they lead
to a rather rich behavior, and even small admixture of such interactions may
drive the system in the vicinity of a phase transition.

1.5.1 S = 1
2 Ladders with Four-Spin Interaction

In case of a two-leg spin- 1
2 ladder the general form of the isotropic trans-

lationally invariant spin ladder Hamiltonian with exchange interaction only
between spins on plaquettes formed by neighboring rungs reads as

H =
∑

i JRS1,i · S2,i + JLS1,i · S1,i+1 + J ′
LS2,i · S2,i+1 (1.83)

+ JDS1,i · S2,i+1 + J ′
DS2,i · S1,i+1 + VLL(S1,i · S1,i+1)(S2,i · S2,i+1)

+ VDD(S1,i · S2,i+1)(S2,i · S1,i+1) + VRR(S1,i · S2,i)(S1,i+1 · S2,i+1),

where the indices 1 and 2 distinguish lower and upper legs, and i labels rungs.
The model is schematically represented in Fig. 1.15.

JD JD
/

JL
/

JLS1,i S1,i+1

S2,i+1S2,i

JR

+VLL ⊗

+VDD ⊗

+VRR ⊗

Fig. 1.15. A generalized ladder model with four-spin interactions

There is an obvious symmetry with respect to interchanging S1 and S2
on every other rung and simultaneously interchanging JL, VLL with JD, VDD.
Less obvious is a symmetry corresponding to the so-called spin-chirality dual
transformation [208]. This transformation introduces on every rung a pair of
new spin- 1

2 operators σ, τ , which are connected to the ‘old’ operators S1,2
through

S1,2 =
1
2
(σ + τ )± (σ × τ ). (1.84)
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Applying this transformation to the generalized ladder (1.83) generally yields
new terms containing mixed products of three neighboring spins; however, in
case of a symmetric ladder with JL,D = J ′

L,D those terms vanish and one
obtains the model of the same form (1.83) with new parameters

J̃L = JL/2 + JD/2 + VLL/8− VDD/8

J̃D = JL/2 + JD/2− VLL/8 + VDD/8

J̃R = JR, ṼRR = VRR (1.85)

ṼLL = 2JL − 2JD + VLL/2 + VDD/2

ṼDD = −2JL + 2JD + VLL/2 + VDD/2

It is an interesting fact that all models having the product of singlet dimers on
the rungs as their exact ground state are self-dual with respect to the above
transformation, because the necessary condition for having the rung-dimer
ground state is [209]

JL − JD =
1
4
(VLL − VDD). (1.86)

It is worthwhile to remark that there are several families of generalized
S = 1

2 ladder models which allow an exact solution. First Bethe-ansatz solva-
ble ladder models were those including three-spin terms explicitly violating
the time reversal and parity symmetries (see the review [210] and referen-
ces therein). Known solvable models with four-spin interaction include those
constructed from the composite spin representation of the S = 1 chain [211],
models solvable by the matrix product technique [209], and some special mo-
dels amenable to the Bethe ansatz solution [212–214]. Among the models
solvable by the matrix product technique, there exist families which connect
smoothly the dimer and AKLT limits [215]. This proves that these limiting
cases are in the same phase.

There are several physical mechanisms which may lead to the appearance
of the four-spin interaction terms in (1.83). The most important mechanism
is the so-called ring (four-spin) exchange. In the standard derivation based
on the Hubbard model at half-filling, in the limit of small ratio of hopping t
and on-site Coulomb repulsion U , the magnitude of standard (two-spin) Hei-
senberg exchange is J ∝ t2/U . Terms of the fourth order in t/U yield, except
bilinear exchange interactions beyond the nearest neighbors, also exchange
terms containing a product of four or more spin operators [216–218]. Those
higher-order terms were routinely neglected up to recent times, when it was
realized that they can be important for a correct description of many physi-
cal systems. Four-spin terms of the VLL type can arise due to the spin-lattice
interaction [219], but most naturally they appear in the so-called spin-orbital
models, where orbital degeneracy is for some reason not lifted [220].
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Ring Exchange

Ring exchange was introduced first to describe the magnetic properties of so-
lid 3He [221]. Recently it was suggested that ring exchange is non-negligible
in some strongly correlated electron systems like spin ladders [222, 223] and
cuprates [224,225]. The analysis of the low-lying excitation spectrum of the p-
d-model shows that the Hamiltonian describing CuO2 planes should contain
a finite value of ring exchange [224,225]. The search for ring exchange in cu-
prates was additionally motivated by inelastic neutron scattering experiments
[226] and NMR experiments [227–229] on Sr14Cu24O41 and Ca8La6Cu24O41.
These materials contain spin ladders built of Cu atoms. The attempts to fit
the experimental data with standard exchange terms yielded an unnaturally
large ratio of JL/JR ≈ 2 which is expected neither from the geometrical
structure of the ladder nor from electronic structure calculations [230]. It
can be shown that inclusion of other types of interactions, e.g., additional
diagonal exchange, does not help to solve this discrepancy [223].

The ring exchange interaction corresponds to a special structure of the
four-spin terms in (1.83), namely VLL = VRR = −VDD = 2Jring. Except ad-
ding the four-spin terms, ring exchange renormalizes the “bare” values of the
bilinear exchange constants as well: JL,L′ → JL,L′ + 1

2Jring, JD,D′ → JD,D′ +
1
2Jring, JR → JR+Jring. Thus, an interesting and physically motivated special
case of (1.83) is that of a regular ladder with rung exchange J1, leg exchange
coupling J2, and with added ring exchange term, i.e., JR = J1 + Jring,
JL = J ′

L = J2 + 1
2Jring, JD = J ′

D = 1
2Jring, VLL = VRR = −VDD = 2Jring.

It turns out that the line Jring = J2 belongs to the general family of mo-
dels (1.86) with two remarkable properties [209]: (i) on this line the product
of singlets on the rungs is the ground state for Jring < J1/4 and (ii) a pro-
pagating triplet is an exact excitation which softens at Jring = J1/4 [222].
Thus, on this line there is an exactly known phase transition point and one
knows also the exact excitation responsible for the transition. The transition
at Jring = J2 = J1/4 is from the rung-singlet phase (dominant J1) to the
phase with a checkerboard-type long range dimer order along the ladder legs
(see Fig. 1.18). In the (Jring, J1) plane, there is a transition boundary sepa-
rating the rung singlet and dimerized phase [222,231], and arguments based
on bosonization suggest that in the limit Jring, J1 → 0 this boundary is a
straight line Jring = const · J1. In the vicinity of this line, even a small value
of Jring can strongly decrease the gap. For higher values of Jring, according
to recent numerical studies [208, 232], additional phases appear in the phase
diagram (see Fig. 1.16): one phase is characterized by the long-range scalar
chiral order defined as mixed product of three spins on two neighboring ladder
rungs, and another phase has dominating short-range correlations of vector
chirality (1.61). Actually, under the dual transformation (1.84) staggered ma-
gnetization maps onto vector chirality, and checkerboard-type dimerizations
is connected with the scalar chirality, so that the two additional phases may
be viewed as duals of the Haldane and dimerized phase.
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Ferromagnetic

Rung

Singlet

Dominant

Collinear Spin

K

J

Dimer LRO

Dominant

Vector Chirality

θ

Scalar Chiral LRO

Fig. 1.16. Phase diagram of the S = 1
2 ladder with equal rung and leg exchange

JL = JR = J and ring exchange Jring = K (from [232], LRO stands for long range
order)

It is now believed [223] that inclusion of ring exchange is necessary for a
consistent description of the excitation spectrum in the spin ladder material
La6Ca8Cu24O41. This substance turns out to be close to the transition line
to the dimerized phase, and therefore has an unusually small gap. Since the
measured value of the energy gap sets the scale for the determination of the
exchange parameters, this implies that actual values of these parameters are
considerably higher compared to an analysis neglecting ring exchange. This
solves the long-standing puzzle of apparently different exchange strength on
the Cu-O-Cu bonds in ladders and 2D cuprates. Stimulated by infrared ab-
sorption results [233] and neutron scattering results on zone boundary ma-
gnons in pure La2CuO4 [234], ring exchange is now also believed to be relevant
in 2D cuprates with large exchange energy. In the following we shortly discuss
this related question:

In 2D magnetic materials with CuO2-planes the basic plaquette is the
same as in the ladder material discussed above. The signature of cyclic
exchange in the 2D Heisenberg model which is usually assumed for materials
with CuO2−planes is a nonzero difference in the energies of two elementary
excitations at the boundary of the Brillouin zone,

∆ = ω(qx = π, qy = 0)− ω(qx =
π

2
, qy =

π

2
).

For the 2D Heisenberg antiferromagnet with its LRO, elementary excitati-
ons are described to lowest order in the Holstein-Primakoff (HP) spin wave
approximation. In this approximation ∆ ∝ Jring results, i.e. ∆ vanishes for
the Heisenberg model with only bilinear exchange. Higher order corrections
to the HP result as calculated in [235, 236] lead to ∆ ≈ −1.4 · 10−2J . This
theoretical prediction is in agreement with the experimental result in cop-
per deuteroformate tetradeuterate (CFTD), another 2D Heisenberg magnet,
but differs from the value ∆ ≈ +3 · 10−2J found from neutron scattering
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experiments in pure La2CuO4. In this latter material, diagonal, i.e. NNN in-
teractions would have to be ferromagnetic to account for the discrepancy and
can therefore be excluded, but a finite amount of ring exchange, Jring ∼ 0.1 J ,
is in agreement with observations.

CFTD and La2CuO4 appear to differ in nothing but their energy scale
(J ≈ 1400K for La2CuO4 and J ≈ 70K for CFTD) and experimental results
would be contradictory when bilinear and biquadratic exchange scale with
the same factor. This is, however, not the case: In terms of the basic Hubbard
model with hopping amplitude t and on-site Coulomb energy U one has J ∝
|t|2/U and Jring ∝ |t|4/U3. Thus, the relative strength of the ring exchange
Jring/J ∝ J/U is material-dependent. In two materials with the same ions
and therefore identical single-ion Coulomb energies, any differences result
from different hopping rates. Thus in materials with high energy scale J such
as La2CuO4 the relative importance of cyclic exchange is enhanced and it
is therefore observable whereas cyclic exchange goes unnoticed in materials
with low energy scale such as CFTD.

Spin-Orbital Models

Modified ladder models (1.83) arise also in one-dimensional systems with
coupled spin and orbital degrees of freedom which can be described by a two-
band orbitally degenerate Hubbard model at quarter filling (Fig. 17). In this
case orbital degrees of freedom may be viewed as pseudospin- 1

2 variables: one
of the ladder legs can be interpreted as carrying the real spins S1,i ≡ Si and
the other one corresponds to the pseudospins S2,i ≡ τ i. The corresponding
effective Hamiltonian for the two-band Hubbard model was first derived by
Kugel and Khomskii [220]. In addition to the spin exchange JS and effective
orbital exchange Jτ , its characteristic feature is the presence of strong spin-
orbital interaction terms of the form (Si ·Si+1)(τ i ·τ i+1), which is equivalent
to the four-spin interaction of the VLL type in (1.83).

Sz=+1/2
τz=+1/2 τz =−1/2
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Fig. 1.17. Pseudospin variables τ describe two degenerate orbital states of the
magnetic ion

Generally, the above Hamiltonian has an SU(2) symmetry in the spin
sector, but only U(1) or lower symmetry in the orbital sector. Under certain
simplifying assumptions (neglecting Hund’s rule coupling, nearest neighbor
hopping between the same type of orbitals only, and only one Coulomb on-site
repulsion constant) one obtains a Hamiltonian of the form
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H =
∑

i

JS(Si · Si+1) + Jτ (τ i · τ i+1) +K(Si · Si+1)(τ i · τ i+1) (1.87)

with JS = Jτ = J and K = 1
4J , which possesses hidden SU(4) symmetry

[212,237]. At this special point, the model is Bethe ansatz solvable [238] and
gapless. This high symmetry can be broken in several ways depending on
the microscopic details of the interaction, e.g., finite Hund’s rule coupling
and existence of more than one Coulomb repulsion constant makes the three
parameters JS , Jτ and K independent, reducing the symmetry to SU(2) ×
SU(2), and further breaking to SU(2)×U(1) is achieved through local crystal
fields which can induce considerable anisotropy in the orbital sector.

The phase diagram of the model (1.87) is extensively studied analyti-
cally [239–241] as well as numerically [240,242,243]. The SU(4) point lies on
the boundary of a critical phase which occupies a finite region of the phase
diagram. Moving off the SU(4) point towards larger JS , Jτ , one runs into the
spontaneously dimerized phase with a finite gap and twofold degenerate gro-
und state. The weak coupling region JS = Jτ � |K| of the dimerized phase
is a realization of the so-called non-Haldane spin liquid [219] where magnons
become incoherent excitations since they are unstable against the decay into
soliton-antisoliton pairs. At the special point JS = Jτ = 3

4K the exact ground
state [244] is a checkerboard-type singlet dimer product shown in Fig. 1.18a,
which provides a visual interpretation of the dimerized phase for K > 0. So-
litons can be understood as domain walls connecting two degenerate ground
states, see Fig. 1.18b, and magnons may be viewed as soliton-antisoliton bo-
und states, in a close analogy to the situation at the Majumdar-Ghosh point
for the frustrated spin-1

2 chain [168]. Numerical and variational studies [245]
show that solitons remain the dominating low-energy excitations in the finite
region around the point JS = Jτ = 3

4K, but as one moves from it towards
the SU(4) point, magnon branch separates from the soliton continuum and
magnons quickly become the lowest excitations.

= Orbitals
One Ion

= SpinsS

τ
(a) (b)

Fig. 1.18. Schematic representation of the spin-orbital model: (a) checkerboard-
type dimerized ground state of (1.87) at JS = Jτ = 3

4K; (b) a soliton connecting
two equivalent dimerized states

For weak negative K one also expects a spontaneously dimerized phase
[219], but now instead of a checkerboard dimer order one has spin and orbital
singlets placed on the same links. A representative exactly solvable point
inside this phase is JS = Jτ = J = − 1

4K, K < 0, which turns out to
be equivalent to the 16-state Potts model. At this point, the model has a
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large gap of about 0.78J and its ground state can be shown to be twofold
degenerate [214].

1.5.2 S = 1 Bilinear-Biquadratic Chain

The isotropic Heisenberg spin-1 AF chain is a generic example of a system in
the Haldane phase. However, the most general isotropic exchange interaction
for spin S = 1 includes biquadratic terms as well, which naturally leads to
the model described by the following Hamiltonian:

H =
∑

n

cos θ (Sn · Sn+1) + sin θ (Sn · Sn+1)2. (1.88)

The AKLT model considered in Sect. 1.3 is a particular case of the above Ha-
miltonian with tan θ = 1

3 . There are indications [246] that strong biquadratic
exchange is present in the quasi-one-dimensional compound LiVGe2O6. The
points θ = π and θ = 0 correspond to the Heisenberg ferro- and antiferroma-
gnet, respectively. The bilinear-biquadratic chain (1.88) has been studied rat-
her extensively, and a number of analytical and numerical results for several
particular cases are available (Fig. 19). It is firmly established that the Hald-
ane phase with a finite spectral gap occupies the interval −π/4 < θ < π/4,
and the ferromagnetic state is stable for π/2 < θ < 5π/4, while θ = 5π/4 is
an SU(3) symmetric point with highly degenerate ground state [247].

nematic?
KBB

TB

HAF

AKLT

ULS

θ
gapless

Ferro
Haldane

Dimer

Fig. 1.19. Phase diagram of the S = 1 bilinear-biquadratic chain (1.88)

An exact solution is available [238] for the Uimin-Lai-Sutherland (ULS)
point θ = π/4 which has SU(3) symmetry. The ULS point was shown [248] to
mark the Berezinskii-Kosterlitz-Thouless (BKT) transition from the massive
Haldane phase into a massless phase occupying the interval π/4 < θ < π/2
between the Haldane and ferromagnetic phase; this is supported by numerical
studies [249].

The properties of the remaining region between the Haldane and fer-
romagnetic phase are more controversial. The other Haldane phase bound-
ary θ = −π/4 corresponds to the exactly solvable Takhtajan-Babujian mo-
del [250]; the transition at θ = −π/4 is of the Ising type and the ground
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state at θ < −π/4 is spontaneously dimerized with a finite gap to the lowest
excitations [249, 251–256]. The dimerized phase extends at least up to and
over the point θ = −π/2 which has a twofold degenerate ground state and
finite gap [257–259].

Chubukov [260] used the Holstein-Primakoff-type bosonic representation
of spin-1 operators [261] based on the quadrupolar ordered “spin nematic”
reference state with 〈S〉 = 0, 〈S2

x,y〉 = 1, 〈S2
z = 0〉, and suggested, on the basis

of the renormalization group arguments, that the region with θ ∈ [5π/4, θc],
where 5π

4 θc <
3π
2 , is a disordered nematic phase. Early numerical studies [262]

have apparently ruled out this possibility, forming a common belief [263,264]
that the dimerized phase extends all the way up to the ferromagnetic phase,
i.e., that it exists in the entire interval 5π/4 < θ < 7π/4. However, recent
numerical results [265,266] indicate that the dimerized phase ends at certain
θc > 5π/4, casting doubt on the conclusions reached nearly a decade ago.

Using special coherent states for S = 1,

|u,v〉 =
∑

j

(uj + ivj)|tj〉, |±〉 = ∓ 1√
2
(|tx〉 ± i|ty〉), |0〉 = |tz〉, (1.89)

subject to the normalization condition u2+v2 = 1 and gauge-fixing constraint
u · v = 0, one can show [267] that for θ slightly above 5π

4 the effective low-
energy physics of the problem can be described by the nonlinear sigma model
of the form (1.47). The topological term is absent and the coupling constant
is given by

g = (1− ctg θ)1/2 
 1 (1.90)

(note that in this case smallness of g is not connected to the large-S approxi-
mation). By the analogy with the Haldane phase, this mapping suggests that
for θ > 5π/4 the system is in a disordered state with a short-range nematic
order and exponentially small gap ∆ ∝ e−π/g. The antiferromagnetism unit
vector l gets replaced by the unit director u and the opposite vectors u and
−u correspond to the same physical state, which makes the model live in the
RP 2 space instead of O(3). The main difference from the usual O(3) NLSM
is that the RP 2 space is doubly connected, which supports the existence of
disclinations – excitations with a nontrivial π1 topological charge. However,
the characteristic action of a disclination is of the order of sin θ and thus the
low-energy physics on the characteristic scale of ∆ should not be affected by
the disclinations.

1.5.3 Mixed Spin Chains: Ferrimagnet

In the last decade there has been much interest in ‘mixed’ 1d models involving
spins of different magnitude S. The simplest system of this type is actually of
a fundamental importance since it represents the generic model of a quantum
ferrimagnet described by the Hamiltonian
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H =
∑

n

(Snτn + τnSn+1) (1.91)

where Sn and τn are respectively spin-1 and spin-1
2 operators at the n-

th elementary magnetic cell (with Sz eigenstates denoted in the following
as (+, 0,−) and (↑, ↓), respectively). An experimental realization of such a
system is the molecular magnet NiCu(pba)(D2O)3 ·D2O [268].

According to the Lieb-Mattis theorem [269], the ground state of the sy-
stem has the total spin Stot = L/2, where L is the number of unit cells.
There are two types of magnons [270, 271]: a gapless “acoustical” branch
with Sz = L/2− 1, and a gapped “optical” branch with Sz = L/2 + 1. The
energy of the “acoustical” branch rises with field, and in strong fields those
excitations can be neglected, while the “optical” magnon gap closes at the
critical field.

A good quantitative description of the ferrimagnetic chain can be achieved
with the help of the variational matrix product states (MPS) approach [34,
181]. The MP approach is especially well suited to this problem since the
fluctuations are extremely short-ranged, with the correlation radius smaller
than one unit cell length [181,270,271]. The ground state properties, including
correlation functions, are within a few percent accuracy described by the MPS
|Ψ0〉 = Tr(g1g2 · · · gL), where the elementary matrix has the form (1.70) and
the variational parameters u, v are determined from the energy minimization.
The variational energy per unit cell is Evar = −1.449, to be compared with
the numerical value Eg.s. � 1.454 [139, 181]. According to (1.67), the above
matrix has the “hyperspin” quantum numbers (1

2 ,
1
2 ), which in turn ensures

that the variational state |Ψ0〉 has correct Stot = Sz
tot = L/2.

The MPS approach works also very well for the excited states [34]. The
dispersion of optical magnons can be reproduced within a few percent by
using the MPS ansatz |n〉 = Tr(g1g2 · · · gn−1g̃ngn+1 · · · gL) with one of the
ground state matrices gn replaced by the matrix

g̃n =
f − 1√

2
gn σ

+1 − f + 1√
2

σ+1 gn + w̃ σ+1 ψ 1
2 , 1

2
, (1.92)

which carries the “hyperspin” (3
2 ,

3
2 ) and contains two free parameters f , w .

Generally the states |n〉 are orthogonal to Ψ0, but are not orthogonal to each
other. Since the states with a certain momentum |k〉 =

∑
n e

ikn|n〉 obviously
depend only on w̃, one parameter in (1.92) is redundant and can be fixed
by requiring that one-magnon states {|n〉} become mutually orthogonal [34].
The resulting variational dispersion for the optical magnon is in excellent ag-
reement with the exact diagonalization data [34]; the variational value for the
optical magnon gap is ∆var � 1.754 J , to be compared with the numerically
exact value ∆opt = 1.759 J [139,270].

Several other mixed-spin systems were studied, particularly mixed-spin
ladders which may exhibit either ferrimagnetic or singlet ground states de-
pending on the ladder type [272,273].
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1.6 Gapped 1D Systems in High Magnetic Field

The presence of an external magnetic field brings in a number of new fea-
tures. In gapped low-dimensional spin systems, the gap will be closed by a
sufficiently strong external magnetic field H = Hc, and a finite magnetization
will appear above Hc [274]. For a system with high (at least axial) symmetry
the high-field phase at H > Hc is critical [275–277] and the low-energy res-
ponse is dominated by a two-particle continuum [278–280]. When the field is
further increased, the system may stay in this critical phase up to the satu-
ration field Hs, above which the system is in a saturated ferromagnetic state.
Under certain conditions, however, the excitations in this high-field phase
may again acquire a gap, making the magnetization per spin m “locked”
in some field range; this phenomenon is known as a magnetization plateau
and has been receiving much attention from both theoretical and experimen-
tal side [122, 203, 281–291]. Other singularities of the m(H) dependence, the
so-called magnetization cusps [292, 293], may arise in frustrated systems. In
anisotropic systems with no axial symmetry the high-field phase has long-
range order and the response is of the quasi-particle type [275,276].

1.6.1 The Critical Phase and Gapped (Plateau) Phase

In a one-dimensional spin chain with the spin S, a necessary condition for
the existence of a plateau is given by the generalized Lieb-Schulz-Mattis theo-
rem [122] discussed in Sect. 1.3.2 as the requirement that lS(1 −M) is an
integer number, where l is the number of spins in the magnetic unit cell,
and M = m/S is the magnetization per spin in units of saturation. This
condition ensures that the system is allowed to have a spectral gap at finite
magnetization, so that one needs to increase the magnetic field by a finite
value to overcome the gap and make the magnetization grow. It yields the
allowed values of M at which plateaux may exist, but it does not guarantee
their existence. For a mixed spin system with ions having different spins Si

the quantity lS in the above condition would be replaced by the sum of spin
values over the unit cell

∑
i Si. The number l may differ from that dictated by

the Hamiltonian in case of a spontaneous translational symmetry breaking.
A trivial plateau at M = 0 is obviously possible for any integer-S spin chain,
which is just another way to say that the ground state has a finite gap to
magnetic excitations.

As an intuitively clear example of a magnetization plateau one can con-
sider the S = 3

2 chain with large easy-plane single-ion anisotropy described
by the Hamiltonian

H =
∑

l

JSl · Sl+1 +D(Sz
l )2 −HSz

l . (1.93)

If D � J , the spins are effectively suppressed to have Sz = ±1/2, and with
increasing field to H ∼ J one gets first to the polarized m = 1/2 (M = 1/3)
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(a) (b)

Fig. 1.20. VBS states visualizing (a) M = 1/3 plateau in the large-D S = 3
2 chain

(1.93); (b) M = 1/2 plateau in the bond-alternated S = 1 chain

state (see Fig. 1.20a), and the magnetization remains locked at m = 1/2 up
to a much larger field H ∼ D, where it gets finally switched to m = 3/2 [122].

An experimentally more relevant example is a S = 1 chain with alter-
nating bond strength, where l = 2 and a nontrivial plateau at M = 1

2 is
allowed. In the strong alternation regime (weakly coupled S = 1 dimers) this
plateau can be easily visulaized as the state with all dimers excited to S = 1,
Sz = +1 (see Fig. 1.20b). The M = 1/2 plateau was experimentally observed
in magnetization measurements up to 70 T in NTENP [294].

Very distinct magnetization plateaux at M = 1
4 and M = 3

4 were ob-
served in NH4CuCl3 [295], a material which contains weakly coupled S = 1

2
dimers. The nature of those plateaux is, however, most probably connected to
three-dimensional interactions in combination with an additional structural
transition which produces three different dimer types [296].

Plateaux and Critical Phase in an Alternated S = 1
2 Zigzag Chain

Another simple example illustrating the occurrence of a plateau and the
physics of a high-field critical phase is a strongly alternating S = 1

2 zigzag
chain, which can be also viewed as a ladder in the regime of weakly coupled
dimers, as shown in Fig. 1.21. For a single dimer in the field, the energy of
the Sz = +1 triplet state |t+〉 becomes lower than that of the singlet |s〉
at H = J . If the dimers were completely decoupled, then there would be
just one critical field H

(0)
c = J and the magnetization M would jump from

zero to one at H = H
(0)
c . A finite weak interdimer coupling will split the

point H = Hc into a small but finite field region [Hc, Hs]. Assuming that the
coupling is small and thus Hc and Hs are close to J , one can neglect for each
dimer all states except the two lowest ones, |s〉 and |t+〉 [289,290]. The Hilbert
space is reduced to two states per dimer, and one may introduce pseudospin-
1
2 variables, identifying |s〉 with |↓̃〉 and |t+〉 with |↑̃〉. The effective spin- 1

2
Hamiltonian in the reduced Hilbert space takes the form

H =
∑

n

J̃xy(S̃x
nS̃

x
n+1 + S̃y

nS̃
y
n+1) + J̃zS̃

z
nS̃

z
n+1 − h̃S̃z

n, (1.94)

where the effective coupling constants are given by

J̃xy = α− β/2, J̃z = α/2 + β/4, h̃ = H − J − α/2− β/4. (1.95)
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At h̃ = 0, depending on the value of the parameter ε = J̃z/|J̃xy|, the effective
spin- 1

2 chain can be in three different phases: the Néel ordered, gapped phase
for ε > 1, gapless XY phase for −1 < ε < 1, and ferromagnetic phase for
ε < −1. Boundaries between the phases are lines β = 6α and β = 2α/3, as
shown in Fig. 1.21.

Hc Hs H

1/2

M

Hc Hs

1
M

H

β

αJ
β

α

α

(a) (b)

(c)

Ferro
XY

XY

(plateau)
Neel

Fig. 1.21. (a) alternating zigzag chain in the strong coupling limit α, β � J ; (b)
its phase diagram in the high-field regime h̃ � 0 (see (1.95)); (c) the magnetization
behavior in the XY and Néel phases

It is easy to understand what the magnetization curve looks like in diffe-
rent phases. In the XY phase the magnetization per spin of the effective chain
m̃(h̃) reaches its saturation value 1

2 at h̃ = ±hc, where hc = |J̃xy|+ J̃z. Point
h̃ = −hc can be identified with the first critical field H = Hc, and h̃ = +hc

corresponds to the saturation field Hs. The symmetry h̃ �→ −h̃ corresponds
to the symmetry against the middle point H = (Hc +Hs)/2. This symmetry
is only valid in the first order in the couplings α, β and is a consequence of
our reduction of the Hilbert space. The magnetization M = m̃ + 1

2 of the
original chain has only trivial plateaux at M = 0 and M = 1, as shown in
Fig. 1.21c.

Near the first critical field Hc the magnetization behaves as (H −Hc)1/2.
This behavior is easy to understand for the purely XY point J̃z = 0. At
this point the model can be mapped to free fermions with the dispersion
E(k) = J̃xy cos k− h̃ which is quadratic at its bottom. The magnetization M
is connected to the Fermi momentum kF via M = 1−kF /π, which yields the
square root behavior. Further, if the fermions are interacting, this interaction
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can be neglected in the immediate vicinity of Hc where the particle density is
low, so that the square root behavior is universal in one dimension (it can be
violated only at special points where the fermion dispersion is not quadratic,
or in presence of anisotropy which breaks the axial symmetry).

In the Néel phase there is a finite gap ∆, and m̃ stays zero up to h̃ = ∆,
so that in the language of the original chain there is a nontrivial plateau at
M = 1

2 whose width is 2∆ (Fig. 1.21c).

A Few Other Examples

A similar mapping to an effective S = 1
2 chain can be sometimes achieved

for systems with no obvious small parameter. An instructive example is the
AKLT chain (1.51) in strong magnetic field H [297, 298]. The zero-field gap
of the AKLT model is known to be ∆ � 0.70 [111], and we are interested in
the high-field regime H > Hc ≡ ∆ where the gap closes. One may use the
matrix product soliton ansatz (1.56), (1.57) to describe the triplet excitation
with µ = +1. States |µ, n〉 with different n can be orthogonalized by putting
in (1.57) a/b = 3 [131]. Further, one may introduce effective spin-1

2 states
|αn〉 = | ↑〉, | ↓〉 at each site, making the identification

|α1α2 · · ·αL〉 = Tr(g1g2 · · · gL), (1.96)

where the matrix gn is either the ground state matrix (1.55) if |αn〉 = | ↑〉, or
the matrix (1.57) corresponding to the lowest Sz = +1 triplet if |αn〉 = | ↓〉,
respectively. Then the desired mapping is achieved by restricting the Hilbert
space to the states of the above form (1.96). The resulting effective S = 1

2
chain is described by the Hamiltonian

HS=1/2 =
∑

n

J̃xy

(
S̃x

nS̃
x
n+1 + S̃y

nS̃
y
n+1

)
− h̃S̃z

n +
∑

n,m

VmS̃
z
nS̃

z
n+m, (1.97)

where J̃xy = 10
9 , h̃ � (H − 1.796), and the interaction constants Vm are

exponentially decaying with m and always very small, V1 = −0.017, V2 =
−0.047, V3 = 0.013, V4 = −0.0046, etc. [297, 298] Thus, if one neglects the
small interaction Vm, then in the vicinity of Hc the AKLT chain is effectively
described by the XY model, i.e. by noninteracting hardcore bosons.

The critical phase appears also in a ferrimagnet (1.91): in an applied field
the ferromagnetic magnon branch acquires a gap which increases with the
field, while the optical branch goes down and its gap closes at H = ∆opt �
1.76 J . A mapping to a S = 1

2 chain can be performed can be performed [34]
in a way very similar to the one described above for the AKLT model, using
the MP ansatz with the elementary matrices (1.70) and (1.92). Restricting
all effective interactions to nearest neighbors only, one obtains the effective
Hamiltonian of the form (1.94), where J̃xy � 0.52, J̃z � 0.12, he � (H−2.44)
are determined by the numerical values of the optimal variational parameters
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in the matrices (1.70) and (1.92) [34]. Similarly to (1.97), the complete effec-
tive Hamiltonian contains exchange interactions exponentially decaying with
distance, but this decay is very rapid, e.g., the next-nearest neigbor exchange
constants J̃ (2)

xy � 0.04, J̃ (2)
z � 0.02, so that one may safely use the reduced

nearest-neighbor Hamiltonian.
For both the ladder and the ferrimagnet, in the critical phase the tempe-

rature dependence of the low-temperature part of the specific heat C exhibits
a rather peculiar behavior [34, 299, 300]. With the increase of the field H, a
single well-pronounced low-T peak pops up when H is in the middle between
Hc and Hs. When H is shifted towards Hc or Hs, the peak becomes flat
and develops a shoulder with another weakly pronounced peak at very low
temperature. This phenomenon can be fully explained within the effective
S = 1

2 chain model [34] and results from unequal bandwidth of particle-type
and hole-type excitations in the effective spin- 1

2 chain [301]: In zero field the
contributions into the specific heat from particles and holes are equal; with
increasing field, the hole bandwidth grows up, while the particle bandwidth
decreases, and the average band energies do not coincide. This leads to the
presence of two peaks in C(T ): holes yield a strong, round peak moving to-
wards higher temperatures with increasing the field, and the other peak (due
to the particles) is weak, sharp, and moves to zero when h̃ tends to ±hc.

1.6.2 Magnetization Cusp Singularities

Cusp singularities were first discovered in integrable models of spin chains
[302], but later were found to be a generic feature of frustrated spin systems
where the dispersion of elementary excitations has a minimum at an incom-
mensurate value of the wave vector [292,293]. The physics of this phenomenon
can be most easily understood on the example of a frustrated S = 1

2 chain
described by the isotropic version of (1.60) with ∆ = 1 and j > 1

4 . Assume
we are above the saturation field, so that the ground state is fully polarized.
The magnon dispersion

ε(k) = H − 1− j + cos k + j cos(2k)

has a minimum at k = k0 = π± arccos(1/4j). The gap at k = k0 closes if the
field H is reduced below the saturation value Hs = 1 + 2j + 1/(8j). If one
treats magnons as hardcore bosons, they are in one dimension equivalent to
fermions, and in the vicinity of Hs, when the density of those fermions is low,
they can be treated as free particles. If Hcusp < H < Hs, where Hcusp = 2
corresponds to the point where ε(k = π) = 0, there are two Fermi seas (four
Fermi points), and if H is reduced below Hcusp they join into a single Fermi
sea. It is easy to show that the magnetization m behaves as

m(H)−m(Hcusp) ∝
{

(H −Hcusp)1/2 , H > Hcusp

H −Hcusp , H < Hcusp
,

so that there is indeed a cusp at H = Hcusp, see Fig. 1.22.
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Fig. 1.22. Schematic explanation of cusp singularities: two Fermi seas join at
H = Hcusp (left) leading to a cusp in the magnetization curve (right)

1.6.3 Response Functions in the High-Field Phase

The description of the critical phase in terms of an effective S = 1
2 chain

is equivalent to neglecting certain high-energy degrees of freedom, e.g., two
of the three rung triplet states in case of the strongly coupled spin ladder.
Those neglected states, however, form excitation branches which contribute
to the response functions at higher energies, and this contribution is gene-
rally easier to see experimentally than the highly dispersed low-energy con-
tinuum of the particle-hole (“spinon”) excitations coming from the effective
S = 1

2 chain. In case of an axially anisotropic system, the continuum will
collapse into a delta-function, and weights of low- and high-energy branches
will be approximately equal. Those high-energy branches were found to exhi-
bit interesting behavior in electron spin resonance (ESR) and inelastic neu-
tron scattering (INS) experiments in two quasi-one-dimensional materials,
Ni(C2H8N2)2Ni(CN)4 (known as NENC) [303] and Ni(C5H14N2)2N3(PF6)
(abbreviated NDMAP) [304].

As mentioned before, the physics of the high-field phase depends strongly
on whether the field is applied along a symmetry axis or not.

Response in an Axially Symmetric Model

Let us consider the main features of the response in the critical phase of the
axially symmetric system using the example of the strongly coupled ladder
addressed in the previous subsection. In order to include the neglected |t−〉
and |t0〉 states, it is convenient to use the hardcore boson language. One
may argue [298,305] that the most important part of interaction between the
bosons is incorporated in the hardcore constraint. Neglecting all interactions
except the constraint, one arrives at the simplified effective model of the type

Heff =
∑

nµ

εµb
†
n,µbn,µ + t(b†n,µbn+1,µ + h.c.), (1.98)

where µ = 0,±1 numbers three boson species (triplet components with Sz =
µ), t = α − β/2 is the hopping amplitude which is equal for all species, and
εµ = J − µH.
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The ground state at H > Hc contains a “condensate” (Fermi sea) of
b+1 bosons. Thus, at low temperatures for calculating the response it suf-
fices to take into account only processes involving states with at most one
b0 or b−1 particle: (A) creation/annihilation of a low-energy b+1 boson; (B)
creation/annihilation of one high-energy (b−1 or b0) particle, and (C) trans-
formation of a b+1 particle into b0 one.

The processes of the type (A) can be considered completely within the
model of an effective S = 1

2 chain, for which analytical results are available
[306–308]. For example, the transversal dynamical susceptibility χxx(q, ω) =
χyy(q, ω) for q close to the antiferromagnetic wave number π is given by the
expression

χxx(π + k, ω) = Ax(H)
sin(πη

2 )Γ 2(1− η
2 )u1−η

(2πT )2−η

×
Γ
(

η
4 − iω−vk

4πT

)
Γ
(

η
4 − iω+vk

4πT

)

Γ
(
1− η

4 − iω−vk
4πT

)
Γ
(
1− η

4 − iω+vk
4πT

) . (1.99)

Here Ax(H) is the non-universal amplitude which is known numerically [309],
v is the Fermi velocity, and η = 1− 1

π arccos(J̃z/J̃xy) (neglecting interaction
between b+1 bosons corresponds to J̃z = 0). This contribution describes a low-
energy “spinon” continuum, and the response function has an edge singularity
at its lower boundary. A similar expression is available for the longitudinal
susceptibility [306]; for the longitudinal DSF of the XY chain in case of zero
temperature a closed exact expression is available as well [49], and for T �= 0
the exact longitudinal DSF can be calculated numerically [56]. Applying the
well-known relation Sαα(q, ω) = 1

π
1

1−e−ω/T Imχαα(q, ω), one obtains in this
way the contribution IA(q, ω) of the (A) processes to the dynamic structure
factor. The processes of (B) and (C) types, which correspond to excitations
with higher energies, cannot be analyzed in the language of the S = 1

2 chain.
Consider first the zero temperature case for (B)-type processes. The model

(1.98) with just one high-energy particle present is equivalent to the problem
of a single mobile impurity in the hardcore boson system. The hopping am-
plitudes for the impurity and for particles are equal, and in this case the
model can be solved exactly [310]. Creation of the impurity leads to the or-
thogonality catastrophe [311] and to the corresponding edge-type singularity
in the response.

In absence of the impurity, the eigenstates of the hardcore boson Hamil-
tonian (1.98) can be represented in the form of a Slater determinant con-
structed of the free plane waves ψi(x) = 1√

L
eikix (L is the system length),

with an additional antisymmetric sign factor attached to the determinant,
which ensures symmetry of the wave function under permutations of ki (this
construction points to the equivalence between fermions and hardcore bosons
which is a peculiarity of dimension one).

Let us assume for definiteness that the total number of b+1 particles in the
ground state N is even. The allowed values of momenta ki are then given by
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ki = π + (2π/L)Ii, i = 1, . . . , N (1.100)

where the numbers Ii should be all different and half-integer. The ground
state |g.s.〉 is given by the Fermi sea configuration with the momenta filling
the [kF , 2π − kF ] interval, the Fermi momentum being defined as

kF = π(1−N/L). (1.101)

The energy of is E =
∑N

i=1(ε+1 + 2t cos ki), and the total momentum P =∑
i ki of the ground state is zero (mod2π).
Since the hopping amplitudes for “particles” and “impurities” are equal,

it is easy to realize that the above picture of the distribution of wave vectors
remains true when some of the particles are replaced by the impurities: they
form a single “large” Fermi sea.

The excited configuration |(µ, λ)k′
1...k′

N
〉 with a single impurity boson bµ

having the momentum λ can be also exactly represented in the determinantal
form [310] with determinants containing wave functions ϕi(x) which become
asymptotically equivalent to the free scattering states 1√

L
ei(k′

ix+δi) in the
thermodynamic limit; for noninteracting hardcore particles the phase shifts
δi = −π/2. The total momentum of the excited state is P ′ =

∑N
i=1 k

′
i + λ,

and its energy is given by E′ =
∑N

i=1(ε+1 +2t cos k′
i)+εµ +2t cosλ. Here the

allowed wave vectors k′
i and λ are determined by the same formula (1.100),

but since the total number of particles has changed by one, the numbers Ii

are now integer.
The matrix element 〈(µ, λ)k′

1...k′
N
|b†µ(q)|g.s.〉, which determines the con-

tribution to the response from the (B)-type processes, is nonzero only if the
selection rules λ = q, P ′ = P +q are satisfied [298], and is proportional to the
determinant Mfi = det{〈ϕi|ψj〉} of the overlap matrix. Due to the orthogo-
nality catastrophe (OC), the overlap determinant is generally algebraically
vanishing in the thermodynamic limit, |Mfi|2 ∝ L−β . The response is, ho-
wever, nonzero and even singular because there is a macroscopic number of
“shake-up” configurations with nearly the same energy.

The OC exponent β can be calculated using the results of boundary con-
formal field theory (BCFT) [312]. For this purpose it is necessary to calculate
the energy difference ∆Ef between the ground state and the excited state
|f〉, including the 1/L corrections. Then in case of open boundary conditions
the OC exponent β, according to BCFT, can be obtained as

β =
2L∆̃Ef

πvF
≡ 2̃∆Ef

∆Emin
. (1.102)

Here vF = 2t sin kF is the Fermi velocity, so that ∆Emin = πvF /L is the
lowest possible excitation energy, and ∆̃Ef is the O(1/L) part of ∆Ef (i.e.,
with the bulk contribution subtracted). In this last form this formula should
be also valid for the periodic boundary conditions, then ∆Emin should be
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replaced by 2πvF /L. For noninteracting hardcore bosons one obtains β = 1
2 .

It is worthwhile to note that this value for the OC exponent coincides with
the one obtained earlier for the regime of weak coupling [313] by means of
the bosonization technique.

The value of the OC exponent is connected to another exponent α = 1−β
which determines the character of the singularity in the response,

SB(q, ω) ∝ 1
(ω − ωµ(q))α

, (1.103)

where ωµ(q) is the minimum energy difference between the ground state and
the excited configuration. For example, at q = π, where the strongest response
is expected, the lowest energy excited configuration is symmetric about k = π
and is given by λ = π, k′

j = π ± 2π
L j, j = 1, . . . , N/2, so that

ωµ(q = π) = εµ + 2t cos kF = (1− µ)H. (1.104)

Note that the quantity ωµ(π), which determines the position of the peak
in the response, and in an inelastic neutron scattering experiment would be
interpreted as the energy of the corresponding mode with Sz = µ, has a
counter-intuitive dependence on the magnetic field: one would rather expect
that it behaves as −µH. The resulting picture of modes which should be seen
e.g. in the INS experiment is schematically shown in Fig. 1.23.
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Fig. 1.23. The schematic dependence of “resonance” lines (peaks in the dynamic
structure factor at q = π, shown as solid lines) on the magnetic field in an axially
symmetric system. The dashed areas represent continua. The processes responsible
for the transitions are indicated near the corresponding lines, e.g. v → −1 denotes
the (B)-type process of creating one boson with Sz = −1 from the vacuum, etc.
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As q moves further from π, λ must follow q, and in order to satisfy the
selection rules one has to create an additional particle-hole pair to compensate
the unwanted change of momentum. Away from q = π this configuration does
not necessarily have the lowest energy, and there are other configurations with
generally large number of umklapp-type of particle-hole pairs, whose energy
may be lower, but, as discussed in [305], their contribution to the response
can be neglected because the corresponding OC exponent is larger than 1 for
this type of configurations.

At finite temperature T �= 0 the singularity gets damped. The contribu-
tion of B-type processes to the dynamical susceptibility χ(q, ω) is proportio-
nal to the following integral:

χ(q, ω) ∝
∫ ∞

0
dteiΩt

( πT

sinhπTt

)β

,

where Ω ≡ ω−ωµ(q) is the deviation from the edge. Then for the dynamical
structure factor S(q, ω) one obtains

SB(q, ω) ∝ cos(πβ/2)
1− e−ω/T

sinh
(
Ω

2T

)
T β−1

∣∣∣Γ
(β

2
+ i

Ω

2πT

)∣∣∣
2
. (1.105)

From (1.105) one recovers the edge singularity behavior (1.103) at T = 0.
For H > Hc there will be also a contribution from C-type transitions

corresponding to the transformation of b+1 bosons into b0 ones. Those pro-
cesses do not change the total number of particles and thus do not disturb
the allowed values of the wave vector, so that there is no OC in this case. The
problem of calculating the response is equivalent to that for the 1D Fermi
gas, with the only difference that we have to take into account the additional
change in energy ε0−ε+1 which takes place in the transition. The well-known
formula for the susceptibility of a Fermi gas yields the contribution of C-type
processes into the response:

SC(q, ω) =
1

1− e−ω/T

π − kF

2π2 (1.106)

×
∫

dk
[
n+1(k)− n0(k + q)

]
δ
(
ω − ε0(k + q) + ε+1(k)

)
,

where εµ(k) = εµ +2t cos k, and nµ = (eεµ/T +1)−1 is the Fermi distribution
function. This contribution contains a square-root singularity, whose edge is
located at

ω = ε0 − ε+1 + 2t
√

2(1− cos q) (1.107)

and which survives even for a finite temperature.
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Role of Weak 3D Coupling in the Axially Symmetric Case:
Bose-Einstein Condensation of Magnons

In the axially symmetric case, the high-field phase is gapless and thus is
extremely sensitive to even a small 3D interaction. If one views the process
of formation of the high-field phase as an accumulation of hardcore bosonic
particles (magnons) in the ground state, then the most important effect is that
in a 3D system those bosons can undergo the Bose-Einstein Condensation
(BEC) transition. In one dimension there is no difference between hardcore
bosons and fermions, and instead of BEC one obtains, as we have seen, a
Fermi sea.

In 3D coupled system, increasing the field beyond Hc leads to the for-
mation of the Bose-Einstein condensate of magnons. The U(1) symmetry
gets spontaneously broken, and the condensate wave function picks a certain
phase which is physically equivalent to the transverse (with respect to the
field) staggered magnetization.

The idea of field-induced BEC was discussed theoretically several ti-
mes [275, 278, 280], but only recently such a transition was observed [314]
in TlCuCl3, which can be viewed as a system of weakly coupled S = 1

2
dimers. The observed behavior of magnon density (longitudinal magnetiza-
tion) n as a function of temperature T was in a qualitative agreement with
the predictions of the BEC theory: with increasing T from zero to the critical
temperature Tc the magnetization decreases, and then starts to increase, so
that the minimum of n occurs at T = Tc. There was, however, some discre-
pancy between the predicted and observed field dependence of the critical
temperature: according to the BEC theory, Tc ∝ (H − Hc)φ with φ = 2/3,
while the experiment yields rather φ ≈ 1/2 [314, 315]. The reason for this
discrepancy seems to be clarified in the recent work [316]: since in TlCuCl3
experiments the critical temperature Tc becomes comparable with the ma-
gnon gap ∆, one has to take into account the “relativistic” nature of the
magnon dispersion ε(q) =

√
∆2 + v2k2, which modifies the theoretical Tc(H)

curves and brings them in a good agreement with the experiment. The BEC
exponent φ = 2/3 is recovered only in a very narrow interval of fields close
to Hc [317].

Due to the spontaneous symmetry breaking the elementary excitations
in the ordered (BEC) phase become of a quasiparticle type, i.e., edge-type
singularities characteristic for the purely 1D axially symmetric system (with
unbroken symmetry) are replaced by delta functions. The response in the
3D-ordered (BEC) phase of TlCuCl3 was measured in INS experiments of
Rüegg et al. [318,319] and was successfully described within the bond-boson
mean-field theory [320]. The observed field dependence of gaps resembles the
1D picture of Fig. 1.23, with a characteristic change of slope at H = Hc

where the long-range 3D order appears.
To understand the main features of the dynamics in the 3D ordered high-

field phase of a weakly coupled dimer system, it is instructive to consider an
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effective dimer field theory which is in fact a continuum version of the very
successful bond boson calculation of [320]. The theory can be constructed
using dimer coherent states [321]

|A,B〉 = (1−A2 −B2)1/2|s〉+
∑

j

(Aj + iBj)|tj〉, (1.108)

where the singlet state |s〉 and three triplet states |tj〉, j = (x, y, z) are
given by (1.72), and A, B are real vectors which are in a simple manner
connected with the magnetization M = 〈S1 + S2〉, sublattice magnetization
L = 〈S1 − S2〉, and vector chirality κ = (S1 × S2) of the spin dimer:

M = 2(A×B) , L = 2A
√

1−A2 −B2 , κ = 2B
√

1−A2 −B2.
(1.109)

We will assume that we are not too far above the critical field, so that the
magnitude of the triplet components is small, A,B 
 1. Assuming further
that all exchange interactions are isotropic, one gets the following effective
Lagrangian density in the continuum limit:

L = �(A · ∂tB −B · ∂tA)− 1
2
βa2(∇A)2 − (mA2 + m̃B2)

+ 2H · (A×B)− λ0(A2)2 − λ1(A2B2)− λ2(A ·B)2. (1.110)

Here a plays the role of the lattice constant, (∇A)2 ≡ (∂kA)(∂kA), and the
energy constants β, m, m̃, λ0,1,2 depend on the details of interaction between
the dimers. For example, in case of purely bilinear exchange only between
neighboring dimers of the type shown in Fig. 1.15, they are given by

α = JL + J ′
L + JD + J ′

D, β = |JL + J ′
L + JD + J ′

D|
m̃ = J, m = m̃− βZ/2, (1.111)
λ0 = βZ, λ1 = (α+ β)Z/2, λ2 = −αZ/2

The spatial derivatives of B are omitted in (1.110) because they appear only
in terms which are of the fourth order in A, B. Generally, we can assume that
spatial derivatives are small (small wave vectors), but we shall not assume
that the time derivatives (frequencies) are small since we are going to describe
high-frequency modes as well.

The vector B can be integrated out, and under the assumption A
 1 it
can be expressed through A as follows:

B = Q̂F , F = −�∂tA + (H ×A)
Qij = (1/m̃) δij − (λ2/m̃

2)AiAj . (1.112)

After substituting this expression back into (1.110) one obtains the effective
Lagrangian depending on A only:
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L =
�

2

m̃

{
(∂tA)2 − v2(∇A)2

}
− 2�

m̃
(H ×A) · ∂tA− U2 − U4, (1.113)

where v is the magnon velocity, v2 = 1
2 (βm̃a2/�2), and the quadratic and

quartic parts of the potential are given by

U2(A) = mA2 − 1
m̃

(H ×A)2, (1.114)

U4(A, ∂tA) = λ0(A2)2 +
λ1

m̃2 A2F 2 +
λ2

m̃2 (A · F )2

Note that the cubic in A term in (1.112) must be kept since it contributes
to the U4 potential.

Now it is easy to calculate the excitation spectrum in the whole range
of the applied field H which we assume do be directed along the z axis. At
zero field, there is a triplet of magnons with the gap ∆ =

√
mm̃, which gets

trivially split by fields below the critical field Hc = ∆, so that there are three
distinct modes with the energies Eµ = ∆+µH, µ = Sz = 0,±1. For H > Hc

the potential energy minimum is achieved at a finite A = A0,

A2
0 =

(H2 −∆2)m̃
2(λm̃2 + λ1H2)

.

All orientations of A0 in the plane perpendicular to H are degenerate. This
U(1) symmetry is spontaneously broken, so that A0 chooses a certain direc-
tion, let us say A0 ‖ x. Then above Hc the Bose-condensed ground state is
to leading order a product of single-dimer wavefunctions of the type (1.108),
which mix three states: a singlet |s〉 and two triplets | ↑↑〉, | ↓↓〉. From this,
it is clear that this BEC transition cannot be correctly described within an
approach based on the reduced Hilbert space with only two states |s〉, | ↑↑〉
per dimer.

The spectrum at H > Hc can be obtained in a straightforward way. One
of the modes always remains gapless (the Goldstone boson), while the two
other modes have finite gaps given by

∆2
z = (1− γ1)−1{∆2 + 2γ0m̃

2 + γ1H
2} (1.115)

∆2
xy = [(1− γ1 − γ2)(1− γ1)]−1{2(H2 −∆2) + 4H2(1− 2γ1)2,

}

where the coefficients γν ≡ λν(H2−∆2)/[2(λ0m̃
2 + λ1H

2)]. In the limit of a
simplified interaction with λ1,2 = 0 the gaps do not depend on the interaction
parameters and acquire the compact form ∆z = H, ∆xy =

√
6H2 −∆2,

which compares rather well with the INS data [318, 319] on TlCuCl3. It is
worthwhile to note a certain similarity in the field dependence of the spectra
in 3D and 1D case: the quasiparticle modes in the 3D case behave roughly in
the same way as the edges of continua in the 1D case.



72 H.-J. Mikeska and A.K. Kolezhuk

Response in an Anisotropic System

Typically, quasi-one-dimensional materials are not completely isotropic. For
example, up to our knowledge there is no experimental realization of the
isotropic S = 1 Haldane chain, and in real materials like NENP or NDMAP
the single-ion anisotropy leads to splitting of the Haldane triplet into three
distinctive components. When the axial symmetry is explicitly broken, the
system behavior changes drastically: the high-field phase is no more critical
and acquires a long-range order even in the purely 1D case.

We will illustrate the general features of the behavior of a gapped ani-
sotropic 1D system in magnetic field by using the example of the strongly
alternated anisotropic S = 1

2 chain described by the Hamiltonian

H =
∑

nα

JαS
α
2n−1S

α
2n +

∑

n

{J ′(S2n · S2n+1)−H · Sn}, J ′ 
 J.

(1.116)

Since this system consists of weakly coupled anisotropic dimers, one may
again use a mapping to the dimer field theory as considered above for 3D
coupling. One again obtains a Lagrangian of the form similar to (1.110), but
the quadratic part of the potential energy gets distorted by the anisotropy:
instead of (mA2+m̃B2) one now has

∑
j{mjA

2
j +m̃jB

2
j }. For the alternated

chain (1.116) the Lagrangian parameters are given by mi = m̃i − J ′, m̃i =
1
4

∑
jn |εijn|(Jj + Jn), λ0 = J ′, λ1 = 2J ′, λ2 = −J ′, β = J ′. Due to this

“distortion”, the effective Lagrangian obtained after integrating out B takes
a somewhat more complicated form

L =
�

2

m̃i

{
(∂tAi)2 − v2

i (∂xAi)2
}
− 2

�

m̃i
(H ×A)i∂tAi − U2 − U4, (1.117)

where v2
i = 1

2J
′m̃ia

2/�2, and

U2(A) = miA
2
i −

1
m̃i

(H ×A)2i ,

U4(A,
∂A

∂t
) = λ(A2)2 + λ1A

2 1
m̃2

i

F 2
i + λ2

AiAj

m̃im̃j
FiFj , (1.118)

with F defined in (1.112).
Having in mind that the alternated S = 1

2 chain, the Haldane chain, and
S = 1

2 ladder belong to the same universality class, one may now conjecture
that in the form (1.117-1.118) the above theory can be also applied to a
variety of other anisotropic gapped 1D systems, with the velocities vi and
interaction constants mi, m̃i, λi treated as phenomenological parameters.

Several phenomenological field-theoretical description of the strong-field
regime in the anisotropic case were proposed in the early 90s [275, 276, 322].
One can show that the Lagrangian (1.117) contains theories of Affleck [275]
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and Mitra and Halperin [322] as particular cases: after restricting the inter-
action to the simplified form with λ1,2 = 0 and assuming isotropic velocities
vi = v, Affleck’s Lagrangian corresponds to the isotropic B-stiffness m̃i = m̃,
while another choice m̃i = mi yields the theory of Mitra and Halperin.

For illustration, let us assume that H ‖ ẑ. Then the quadratic part of the
potential takes the form

U2 = (mx −
H2

m̃y
)A2

x + (my −
H2

m̃x
)A2

y +mzA
2
z, (1.119)

and the critical field is obviously Hc = min{(mxm̃y)1/2, (mym̃x)1/2}. At zero
field the three triplet gaps are given by ∆i = (mim̃i)1/2. Below Hc the energy
gap for the mode polarized along the field stays constant Ez = ∆z, while the
gaps for the other two modes are given by

(E±
xy)2 =

1
2
(∆2

x +∆2
y) +H2 (1.120)

±
[
(∆2

x −∆2
y)2 +H2(mx +my)(m̃x + m̃y)

]1/2
.

Below Hc the mode energies do not depend on the interaction constants
λi, while the behavior of gaps at H > Hc is sensitive to the details of the
interaction potential.

It is easy to see that in the special case mi = m̃i, the above expression
transforms into

E±
xy =

1
2
(∆x +∆y)±

[1
4
(∆x −∆y)2 +H2

]1/2
, (1.121)

Fig. 1.24. Measured field dependence of the gap energies in NDMAP at T = 30 mK
and H applied along the crystallographic a axis (open symbols). Dashed and dash-
dot lines are predictions of the theoretical models proposed in [275] and [276],
respectively. The solid lines are the best fit to the data using the alternative model
(1.117). (From [304])
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which exactly coincides with the formulas obtained in the approach of Tsvelik
[276], as well as with the perturbative formulas of [323, 324] and with the
results of modified bosonic theory of Mitra and Halperin [322] who postulated
a bosonic Lagrangian to match Tsvelik’s results for the field dependence of
the gaps below Hc.

The present approach was applied to the description of the INS [304] and
ESR [325] experiments on the S = 1 Haldane material NDMAP and yielded
a very good agreement with the experimental data, see Fig. 1.24. It turns
out that for a satisfactory quantitative description the inclusion of λ1,2 is
important, as well as having unequal stiffness constants mi �= m̃i.
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235. O. Syljůasen, H.M. Rønnow: J. Phys.: Condens. Matter 12, L405 (2000)
236. H. M. Rønnow, D.F. McMorrow, R. Coldea, A. Harrison, I. D. Youngson,
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Abstract. It is known from the Mermin-Wagner theorem that magnetic long-range
order can exist in two dimensions only at zero temperature, but even then it can
still be destroyed e.g. by quantum fluctuations or geometric frustration. In this con-
text, we review ground-state features of the s = 1/2 Heisenberg antiferromagnet on
two-dimensional lattices. In order to discuss the interplay of lattice topology and
quantum fluctuations we focus on the 11 two-dimensional uniform Archimedean lat-
tices which include e.g. the square, triangular and kagomé lattice. The ground state
of the spin-1/2 Heisenberg antiferromagnet is likely to be semi-classically ordered
in most cases. However, the interplay of geometric frustration and quantum fluc-
tuations gives rise to a quantum paramagnetic ground state without semi-classical
long-range order on two lattices which are precisely those among the 11 uniform
Archimedean with a highly degenerate ground state in the classical limit s → ∞.
The first one is the famous kagomé lattice where many low-lying singlet excitations
are known to arise in the spin gap. The second lattice, called star lattice, is a new
example for a quantum paramagnet and has a clear gap to all excitations.

Modification of certain bonds leads to quantum phase transitions which are also
discussed briefly. Furthermore, we discuss the magnetization process of the Heisen-
berg antiferromagnet on the 11 Archimedean lattices, focusing on anomalies like
plateaus and a magnetization jump just below the saturation field. As an illust-
ration we discuss the two-dimensional Shastry-Sutherland model which is used to
describe SrCu2(BO3)2.

2.1 Introduction

The subject of quantum spin-half antiferromagnetism in two-dimensional
(2D) systems has attracted a great deal of interest in recent times in connec-
tion with the magnetic properties of layered cuprate high-temperature su-
perconductors [1–3] and with the recent progress in synthesizing novel quasi-
2D magnetic materials exhibiting a spin-gap behavior like CaV4O9 [4] or
SrCu2(BO3)2 [5]. Another striking feature is the plateau structure in the
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magnetization process of frustrated quasi-two-dimensional magnetic materi-
als like SrCu2(BO3)2 [5] or Cs2CuBr4 [6] (for more details concerning the
experiments see chapter by P. Lemmens and P. Millet in this book). Howe-
ver, low-dimensional quantum spin systems are of interest in their own right
as examples of strongly interacting quantum many-body systems. Although
we know from the Mermin-Wagner theorem [7] that thermal fluctuations are
strong enough to destroy magnetic long-range order (LRO) for Heisenberg
spin systems in one and two dimensions at any finite temperature, the role
of quantum fluctuations is less understood. For the magnetic ordering in
the ground state (GS) the transition from one to two dimensions seems to
be crucial. It is well known that the GS of the one-dimensional Heisenberg
quantum antiferromagnet does not possess Néel LRO (see chapter by H.-
J. Mikeska and A.K. Kolezhuk in this book). On the other hand as a result of
intensive work in the late eighties it is now well-established that the GS of the
Heisenberg antiferromagnet on the square lattice exhibits semi-classical Néel
LRO (see for example the reviews [1, 2]). However, Anderson’s and Fazekas’
investigations [8, 9] of the triangular lattice led to the conjecture that quan-
tum fluctuations plus frustration may be sufficient to destroy the Néel-like
LRO in two dimensions.

Besides frustration, there is another mechanism favoring the “melting”
of Néel ordering in the ground states of unfrustrated Heisenberg antiferro-
magnets, namely the competition of non-equivalent nearest-neighbor (NN)
bonds leading to the formation of local singlets of two (or even four) coupled
spins. By contrast to frustration, which yields competition in quantum as well
as in classical systems, this type of competition is present only in quantum
systems.

Several notations for the quantum phases without semi-classical Néel or-
der are used in the literature, where one often finds the terms ‘quantum dis-
order’ or ‘quantum spin liquid’. However, these quantum phases may exhibit
quite different complex properties. We shall prefer the notation ‘quantum pa-
ramagnet’ (see, e.g. [10]) to stress their common feature, namely the absence
of magnetic order at T = 0.

A more specific classification of GS phases of 2D quantum magnets has
been proposed recently by Lhuillier, Sindzingre, Fouet and Misguich [11–15].
Besides the semi-classical Néel like LRO, these authors also characterize three
quantum GS phases, namely the so-called valence bond crystal, the type I
spin liquid and the type II spin liquid (for more details see [11–15] and also
Sect. 2.4.4).

We note that quantum paramagnetic phases may be observed also in
three-dimensional strongly frustrated quantum magnets like the Heisenberg
antiferromagnet on the pyrochlore lattice [16] although the tendency to order
is more pronounced in three than in two dimensions.

In this review we focus on the GS of the 2D isotropic Heisenberg antifer-
romagnet (HAFM)
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and consider the extreme quantum case of spin quantum number 1/2. Of
course, there is a long history of investigations of this model. Nevertheless,
much interesting new physics has been discovered in recent years. The 2D
systems are of particular interest because the competition between quan-
tum fluctuations and interactions seems to be well balanced, and fine tuning
of this competition may lead to zero-temperature transitions between semi-
classical and quantum phases (see chapter by S. Sachdev in this book and
also Sect. 2.5).

The calculation of the GS of the spin half HAFM is challenging. Besi-
des the conventional methods like spin-wave theory and general quantum-
many body techniques like the coupled cluster method also new numerical
methods like quantum Monte Carlo and exact diagonalization are powerful
instruments. However, only a few of them (e.g. exact diagonalization or the
coupled cluster method) are universally applicable, whereas some methods
suffer from the sign problem in frustrated systems. More details regarding
analytical and numerical methods can be found in chapters by N.B. Iva-
nov and D. Sen; D.C. Cabra and P. Pujol; N. Laflorencie and D. Poilblanc;
D.J.J. Farnell and R.F. Bishop. The majority of the results presented in this
chapter were obtained by exact diagonalization using the program package
spinpack [17].

Quantum magnetism in 2D systems is a very broad field. To be speci-
fic and different from other existing reviews we focus our discussion on the
ground state properties of the spin half HAFM on the 11 uniform Archime-
dean lattices (tilings). These lattices are the prototypes of 2D arrangements
of spins and vary in their geometrical and topological properties. Hence they
present an ideal possibility for a systematic study of the interplay of lattice
geometry and magnetic interactions in 2D quantum spin systems. Many of
the lattices considered find their realization in nature either in a pure or in a
modified form. Furthermore, almost all lattices can be transformed into each
other by bond or site depletion/addition. One now has the opportunity to
study GS transitions caused by modifying the strength of some bonds [18].

With regard to other aspects of 2D quantum magnetism like e.g. finite
temperature properties we recommend among others [1, 2, 12,13,19–22].

The plan of this review is as follows. In Sect. 2.2 we describe the main
geometrical features of the 11 uniform Archimedean lattices and discuss their
mutual relationships. In Sect. 2.3 we discuss several criteria for semi-classical
Néel like order in quantum antiferromagnets with a particular focus on the
information that can be extracted from exact diagonalization of finite lattices.
The subsequent Sect. 2.4 is devoted to the analysis of the magnetic ground-
state ordering of the spin-half HAFM on the Archimedean lattices, where
we consider separately bipartite (Sect. 2.4.1) and frustrated (Sects. 2.4.2
and 2.4.3) lattices. The findings for all these lattices are compared and sum-
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marized in Sect. 2.4.4. Readers uninterested in the detailed discussion of the
particular lattices are referred to this Sect. 2.4.4. In Sect. 2.5 we consider
briefly quantum phase transitions occurring in the 2D HAFM due to the in-
terplay of competition in the interactions and strong quantum fluctuations.
In the final Sect. 2.6 we discuss the magnetization process of the spin-half
HAFM on the Archimedean lattices using the square (Sect. 2.6.1), triangular
(Sect. 2.6.2) and kagomé lattice (Sect. 2.6.3) as main examples. We furt-
her discuss exact eigenstates that appear for the kagomé and star lattices
in Sect. 2.6.4 and the relation between the Shastry-Sutherland model and
SrCu2(BO3)2 in Sect. 2.6.5.

2.2 Archimedean Lattices

2.2.1 Characteristics and Geometry

In 2D magnetism we are faced with a large number of different lattices with
differing coordination numbers and topologies and therefore we cannot ex-
pect a general statement concerning zero-temperature semi-classical Néel-like
LRO in 2D quantum spin systems. Nevertheless, we can try to find some sy-
stematics concerning the main geometric features relevant for the magnetic
ordering in antiferromagnets.

The 11 uniform Archimedean tilings (lattices) shown in Fig. 2.1 represent
the prototypes of 2D arrangements of regular polygons. The first investiga-
tions of 2D regular tilings go back to Johannes Kepler (Harmonice Mundi,
1619). 2D (spin) lattices are obtained from the tilings by putting sites (spins)
on each vertex connecting neighboring polygons. The HAFM for these latti-
ces is obtained by assuming antiferromagnetic exchange bonds J = 1 on each
edge of the polygons.

The Archimedean lattices vary in coordination number z (from 3 to 6)
and in topology (frustrated and nonfrustrated; equivalent nearest-neighbor
(NN) bonds and non-equivalent NN bonds). Therefore a systematic study of
the influence of lattice geometry on magnetic ordering may be made.

Among them we have three 2D lattices built by a periodic arrangement
of identical regular polygons, namely the square lattice (T2), the triangu-
lar lattice (T1) and the honeycomb lattice (T3). Other uniform tilings are
obtained by combining different regular polygons such as hexagons and tri-
angles or hexagons, squares and triangles with the restriction that all lattice
sites are equivalent and all polygons have identical edge length. Under these
geometric restrictions precisely 11 uniform Archimedean tilings are possible,
where one tiling exists in two enantiomorphic forms (left and right handed).
Only two of them, namely the square lattice (T2), and the triangular lat-
tice (T1) are primitive lattices having only one site per geometric unit cell;
all other ones have at least two sites per unit cell. More information can be
found, for example, in [23].
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T1: 36 = triangular T2: 44 = square T3: 63 = honeycomb

T4a: 34.6 = maple leaf T4b: 34.6 = maple leaf T5: 33.42 = trellis

T6: 32.4.3.4 = SrCuBO T7: 3.4.6.4 = bounce T8: 3.6.3.6 = kagomé

T9: 3.122 = star T10: 4.6.12 = SHD T11: 4.82 = CaVO

Fig. 2.1. The 11 Archimedean tilings T1. . .T11. The mathematical description
n1.n2.n3 . . . nr by numbers ni separated by dots corresponds to the number of
vertices of the polygons arranged around a vertex. The tilings T1, T2, T3, T8
are well-known as triangular (T1), square (T2), honeycomb (T3) and kagomé (T8)
lattices. For the other lattices no standardized names are available. For T4, T5,
T6, T10 and T11 we employ the names maple-leaf (T4), trellis (T5), SrCuBO or
Shastry-Sutherland (T6), SHD (i.e. square-hexagonal-dodecagonal, T10) and CaVO
(T11) lattice previously used in papers dealing with magnetic properties of these
lattices (see also Sect. 2.4). We shall denote the tilings T7 and T9 by the names
bounce (T7) and star (T9) lattice, proposed in [24]
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In this section we will illustrate the Archimedean tilings and discuss their
main geometric properties. As mentioned above, they represent the prototy-
pes of 2D tilings, from which a large variety of 2D lattices can be derived. As
a result we obtain bipartite, i.e. non-frustrated (only even polygons, tilings
T2, T3, T10, T11) as well as non-bipartite, i.e. frustrated spin lattices (tilings
with odd polygons (triangles), i.e. T1, T4, T5, T6, T7, T8, T9). Furthermore,
we can differentiate between lattices with only equivalent NN bonds (T1, T2,
T3, T8) and lattices with non-equivalent NN bonds (T4, T5, T6, T7, T9,
T10, T11).

The degree of geometric frustration and the coordination number are im-
portant quantities that strongly influence the magnetic properties. In order
to give a more precise characteristics of the frustration, we use an idea propo-
sed by Kobe and coworkers [25] and consider the GS energy of the classical
HAFM (i.e. the spins S are ordinary classical vectors of length s = 1/2).
Non-frustrated lattices (T2, T3, T10, T11) have minimal energy per bond
Eclass

0 /bond = −1s2. Geometric frustration leads to unsatisfied bonds yiel-
ding an increase of classical GS energy. This increase of energy can be used as
a measure of frustration. The tilings with maximal frustration are the trian-
gular lattice (T1) and the kagomé lattice (T8) having Eclass

0 /bond = −s2/2.
The combination of strong frustration and low coordination number z favors
strong quantum fluctuations. In Fig. 2.2 we show the location of the lattices
in a parameter space spanned by the coordination number z and the frustra-
tion. The suppression of classical Néel-like LRO is most likely in the upper
left corner in Fig. 2.2, whereas in the opposite region Néel ordered systems
are expected.
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Fig. 2.2. Location of the Archimedean tilings in parameter space spanned by
frustration (classical GS energy per bond divided by s2, see text) and coordination
number z
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2.2.2 Relationships Between the Lattices

As mentioned above, we interpret the edges of the polygons as exchange bonds
which connect the spins sitting on the vertices. In real magnetic systems
often we are faced with the situation that bonds may vary in strength for
instance due to lattice distortions. Hence it is interesting to consider also
bonds varying in strength. In particular, a given lattice may interpolate into
another different lattice as selected bonds are forced to reach the limit J ′ = 0.
The relationships between the Archimedean lattices based on removing bonds
are summarized in Fig. 2.3.4 A continuous change of those bonds from J ′ = 1
to J ′ = 0 is therefore accompanied by a transition or a crossover between the
ground states of the related lattices. We illustrate some of these relationships
between lattices in Figs. 2.4 and 2.5.

10

6 1 5

8 3 4

9 7

211

Fig. 2.3. Relationships (arrows) between the tilings (represented by numbers). A
related tiling is obtained from an initial tiling by removing certain edges (bonds)
and a subsequent appropriate distortion

T1: 36 T2: 44 T3: 63

Fig. 2.4. Relationships between triangular (T1, left), square (T2, middle) and
honeycomb lattice (T3, right), see text for details

4 It is also possible to find transformations between lattices by removing sites (site
depletion). That is not considered here.



92 J. Richter, J. Schulenburg, and A. Honecker

T3: 63 T4: 34.6 T7: 3.4.6.4

Fig. 2.5. Relationships between the honeycomb (left), maple-leaf (middle) and
bounce lattice (right), see text for details

Figure 2.4 shows the relationships between triangular, square and honey-
comb lattices. The square lattice is obtained from the triangular lattice by
omitting the dotted bond J ′′. The geometric distortion of the square lattice
obtained in this manner is irrelevant for the HAFM because the interaction
matrix Jij of the distorted lattice is identical to the regular lattice.5 The ho-
neycomb lattice is then obtained from the square lattice by omitting the das-
hed bonds J ′ (the model with variable J ′ is known as the J−J ′ model on the
square lattice and shows interesting quantum phase transitions [21,26,27]).

In Fig. 2.5 the relationships between the honeycomb, the maple-leaf and
the bounce lattice are shown. Starting from the maple-leaf lattice one obtains
the bounce lattice by omitting the dotted bonds JD. Further removing the
dashed-dotted bond in the bounce lattice one obtains the star lattice (T9, not
shown in Fig. 2.5). On the other hand the honeycomb lattice is obtained from
the maple-leaf lattice by removing the dashed bonds JT . Again the distortion
of the lattices is irrelevant for the HAFM.

2.3 Criteria for Néel Like Order

2.3.1 Order Parameter

The definition of the magnetic order parameter is usually related to the clas-
sical ground state (GS). Thus supposing that in the classical GS a spin at
site i is directed along the unit vector ei, we choose the spin orientation ei

as local z-direction ez′
i = ei, which may in general vary from site to site. In

order to break the rotational symmetry we add a field to the Hamiltonian
(2.1)
5 Of course, the distorted lattices obtained by removing bonds may also be trans-

formed to the regular (non-distorted) lattice by an appropriate shift of the sites.
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H ′ = H − h
∑

i

ez′
i Si. (2.2)

We define the order-parameter operator as

m̂z =
1
N

∑

i

Sz′
i =

1
N

∑

i

ez′
i Si. (2.3)

Then the order parameter for a GS spontaneously breaking the rotational
symmetry of H is defined as

mz = lim
h→0

lim
N→∞

〈m̂z〉, (2.4)

where 〈Ô〉 means the expectation value of the operator Ô in the GS. This
definition of the order parameter corresponds, e.g., to the order parameter
used in spin-wave theory (SWT). However, symmetry breaking is introduced
in this case by the Holstein-Primakoff transformation, which starts from a
symmetry broken classical GS. In order to be more specific let us consider a
classical spin system having a planar magnetic GS ordering. We choose the
z-x plane of a fixed global coordinate system to describe the order. Then the
relation between the spin S′

i in the local coordinate system and the spin Si

in the global coordinate system is given by

S′
i = Û(φi)Si = (cos(φi)Sx

i − sin(φi)Sz
i , Sy

i , sin(φi)Sx
i + cos(φi)Sz

i ),
(2.5)

where φi is the angle between the local ez′
i and the global z axis ez. The last

component in (2.5) enters the order-parameter operator m̂z in (2.3).
The definition of the order-parameter operator (2.3) yields the well-known

order parameter of the ferromagnet (φi = 0)mz = limh→0; N→∞
1
N 〈
∑

i S
z′
i 〉 =

limh→0; N→∞
1
N 〈
∑

i S
z
i 〉 (magnetization) as well as the order parameter for

the conventional two-sublattice Néel antiferromagnet (φi∈A = 0, φi∈B = π)
mz

s = limh→0; N→∞
1
N 〈
∑

Sz′
i 〉 = limh→0; N→∞

1
N 〈
∑

εiS
z
i 〉 (staggered ma-

gnetization), where the staggered factor εi is εi = +1 (εi = −1) for sites
belonging to sublattice A(B). The staggered magnetization can be expressed
by the sublattice magnetizations Sz

A =
∑

i∈A Sz
i and Sz

B =
∑

i∈B Sz
i , we have

mz
s = 1

N 〈Sz
A − Sz

B〉h→0,N→∞. The general definition (2.4) is also applicable
for non-collinear (canted) spin structures appearing on frustrated lattices.
For example, the classical GS of the HAFM on the triangular lattice consists
of three sublattices A, B, C with an angle of 120◦ between the sublattice
spins, i.e. we have φi∈A = 0, φi∈B = 2π/3 and φi∈C = 4π/3. Consequently
we find mz = 1

N 〈Sz
A +

√
3Sx

B/2 − Sz
B/2 −

√
3Sx

C/2 − Sz
C/2〉h→0,N→∞. The

extension to arbitrary non-collinear spin structures is straightforward.
The situation is changed for the HAFM on finite lattices considered in

numerical studies because the GS of a finite system cannot possess the sponta-
neous symmetry breaking used for the infinite lattice ((2.2)–(2.4)). Therefore
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the square of the order-parameter operator (m̂z)2 has to be used. Further-
more, we have to take into account the fact that the GS of finite antifer-
romagnetic systems with even number of sites N is a rotationally invariant
singlet state.6 Then the magnetic correlations are equally distributed over
all three components 〈Sx

i S
x
j 〉 = 〈Sy

i S
y
j 〉 = 〈Sz

i S
z
j 〉. Thus, taking into account

this symmetry, one defines the relevant order parameter for finite systems as

m̄ =

√
〈
( 1
N

∑

i

S′
i

)2〉 =
√

3〈(m̂z)2〉 . (2.6)

One may write this order parameter as

m̄ =

√
〈
( 1
N

∑

i

εiSi

)2〉 =
√

1
N2

∑

i,j

εiεj〈SiSj〉 (2.7)

=

√
3
N2 〈(S

z
A)2 + (Sz

B)2 − 2Sz
AS

z
B〉

for bipartite antiferromagnets and

m̄ =

√
3
N2 〈(S

z
A)2 + (Sz

B)2 + (Sz
C)2 − Sz

AS
z
B − Sz

AS
z
C − Sz

BS
z
C〉 (2.8)

for the triangular lattice. Note that 〈Sx
i S

z
j 〉 = 0 was used in the last equa-

tion. Obviously the analysis of magnetic order is then based on the spin pair
correlation function 〈SiSj〉. We notice that an alternative definition to (2.4)
of the order parameter for infinite systems uses the asymptotic large-distance
behavior of the spin pair correlation function.

The order parameter m̄ is widely used for finite lattices such as square
or triangular lattices. Finite-size extrapolations of m̄ yield good agreement
with mz defined in (2.4) calculated e.g. by spin-wave theory or the coupled
cluster method (see e.g. [31–33]).

However, the definition of the order parameter given above is to some
extent problematic for the following reasons: (i) The definition is biased be-
cause it supposes the same type of ordering in the quantum system as in the
classical system. Investigations of spin systems with spiral order demonstrate,
that the characteristic angles φi entering (2.5) may be different in the clas-
sical and quantum case [27]. (ii) There are systems with a huge non-trivial
degeneracy of the classical GS (e.g. the HAFM on T8 (kagomé) and on T9
(star), see Sect. 2.4.3). The question now arises: which of the large number of
degenerate classical ground states should be used? (iii) A significant problem
is also posed if the classical GS is not known.
6 Note that although there is a rigorous proof for the singlet character of the GS of

finite systems only for the HAFM on bipartite lattices [28, 29], much numerical
evidence suggests that the same statement is true for nonbipartite frustrated
antiferromagnetic Heisenberg systems (see e.g. [30]).
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We therefore use a universal definition of the order parameter, given by

m+ =

√
(M+)2

N2 =



 1
N2

N∑

i,j

|〈SiSj〉|




1/2

, (2.9)

which avoids the problems listed above. For bipartite systems this definition is
identical to the staggered magnetization m̄ defined in (2.7). For spin systems
with noncollinear GSs both definitions m̄ and m+ are not identical, although
there is a relation between them. For instance, we have in the classical limit
(m+

class)
2 = 4

3 (m̄class)2 for the HAFM on the triangular lattice. Note that this
relation remains valid also for the singlet GS of the quantum spin-1/2 HAFM
on the triangular lattice.

Finally, we mention that the universality of the definition (2.9) of the
order parameter may lead to a certain loss of distinction between different
types of ordering and for the detection of the type of order an additional
inspection of the spin-spin correlation function is necessary.

2.3.2 Mechanism of Symmetry Breaking –
The Pisa Tower of Quasi-degenerate Joint States (QDJS)

As pointed out already by P.W. Anderson [34] the spontaneous symmetry
breaking in semi-classically Néel ordered antiferromagnets at the thermody-
namic limit is revealed in the spectrum of a finite system. This idea has been
picked-up in several papers [31,35–45] dealing with two-dimensional quantum
antiferromagnetism.

In the limit N → ∞ a whole set of non-rotationally invariant excited
states collapses onto the true GS (e.g. the semi-classical two-sublattice Néel
state for the HAFM on a bipartite lattice). Therefore a large amount of
information on possible Néel like LRO is contained in the spectrum of HAFM
on finite lattices. There are extensive systematic studies for HAFM on the
square, triangular and kagomé lattice [31,36–39,42] and some recent reviews
by Lhuillier, Sindzingre, Fouet and Misguich [11–15]. We follow the lines of
their studies and illustrate some main features using the HAFM on the square
lattice as an example.

For a system with two-sublattice Néel LRO in the GS the low-energy part
of the spectrum up to S ≈

√
N is roughly described by the dynamics of a

quantum top, i.e. the effective low-energy Hamiltonian reads

Heff � E0 +
S2

2Nχ0
+Hmagnons → Emin(S) � E0 +

S(S + 1)
2Nχ0

+ Emagnons

(2.10)

with E0 as the GS energy, χ0 as uniform susceptibility and S2 as the square
of total spin, cf. Fig. 2.6. The inverse ‘moment of inertia’ 1

Nχ0
vanishes in
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Fig. 2.6. HAFM on the square lattice. a: Low-energy spectrum for N = 32 (the
inset shows the k points in the Brillouin zone). b: Energy of the QDJS versus
S(S + 1) for various system sizes N

the thermodynamic limit (see Fig. 2.7b) and therefore the so-called quasi-
degenerate joint states (QDJS) described by (2.10) collapse to the symme-
try broken Néel state in the thermodynamic limit. In case of more complex
Néel order e.g. with three sublattices as for the HAFM on the triangular
lattice the basic features of the low-energy Hamiltonian as given in (2.10)
are maintained but the moment of inertia then contains both in-plane and
out-of-plane susceptibilities. Also the number of the QDJS for a given to-
tal spin S depends on the number of sublattices in the Néel state. There is
only one QDJS in each sector of S for the two-sublattice HAFM, but e.g.
NS = min(2S + 1, N/2− S + 1) QDJS for a three-sublattice Néel state such
as in the triangular lattice [37]. Furthermore, the translational symmetry
of the QDJS depends on the relation between the translational symmetry
of the Néel state and of the lattice. For instance, the size of the magne-
tic unit cell for the Néel ordered square-lattice (triangular-lattice) HAFM
is twice (three times) as large as the geometric unit cell. Consequently, the
QDJS belong to k-vectors Q1 = (0, 0) and Q2 = (π, π) (Q1 = (0, 0) and
Q+

2 = (+4π/3, 0), Q−
2 = (−4π/3, 0)) of lattice translational symmetry with

Q2 (Q+
2 and Q−

2 ) mapping on the center of the magnetic Brillouin zone.
However, only Q = (0, 0) appears for the QDJS for the honeycomb lattice
which has two atoms in the geometric unit cell as well as in the magnetic
unit cell.
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Indeed, a linear relation between the lowest eigenvalues Emin(S) and
S(S+1) and a similar relation for the family of magnon excitations has been
observed for the HAFM on the 2D square lattice [35], the honeycomb lat-
tice [42] as well as for the triangular-lattice HAFM [37]. We show in Fig. 2.6a
the low-energy spectrum for the HAFM on the square lattice with N = 32
sites in more detail.

According to (2.10) the collapsing QDJS follow in the energy-S(S + 1)
diagram for small S �

√
N in good approximation a straight line with in-

creasing inclination (with decreasing slope), see Fig. 2.6b, and are sometimes
called the Pisa tower of states. The strong deviation from this linear relation
has been used as one argument for the absence of semi-classical LRO for the
HAFM on the kagomé lattice [38]. A similar argumentation has been used
in [40] for the J1−J2 square-lattice HAFM and in [41] for the HAFM on the
fractal Sierpiński gasket.

Well separated above the family of QDJS a second family of levels exists
describing the magnon excitations typical for a HAFM with Néel ordering.
This family represents the ‘softest magnons’, i.e. magnons of energy EM

min =
c|kmin| with c as lowest spin-wave velocity and |kmin| ∼ 1

L (L =
√
N) as

smallest finite wave vector (related to the wave vector Q of the corresponding
QDJS) allowed by the periodic boundary conditions of the finite lattice. The
energy of these magnons also collapses, however, with

EM
min �

c√
N

(2.11)

much slower than Emin(S) ∝ 1
N from (2.10). This scaling behavior of the

QDJS and of the softest magnons is shown in Fig. 2.7a, where the logarithmic
scale in this figure makes it obvious that the slope of the E0(S = 1) − E0-
curve belonging to the QDJS is about twice as large as the slope of the
E1(S = 1)− E0-curve belonging to the softest magnons.

Finally we want to emphasize two special aspects of the spectrum of semi-
classically Néel ordered HAFMs. The first one is the so-called spin gap, i.e.
the gap ∆ = E0(S = 1) − E0(S = 0) between the first triplet excitation
and the singlet GS. According to (2.10) and (2.11) this gap vanishes in the
thermodynamic limit for a Néel ordered GS. Note that (2.11) is related to the
existence of gapless Goldstone modes. However, a non-vanishing spin gap for
N →∞ is an indication for a quantum paramagnetic GS. The second aspect
is that the singlet GS is unique and the lowest singlet excitation above the
GS is well separated from it in a finite system (see Fig. 2.6a). The first triplet
excitation above the rotationally invariant singlet GS generally is the lowest
excitation at all. Therefore the existence of low-lying singlets deep within the
spin gap also can be understood as an indication for a non-Néel ordered GS.
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Fig. 2.7. HAFM on the square lattice. a: Finite-size scaling of lowest excitations
(double logarithmic scale). b: Finite-size scaling of inverse moment of inertia

2.3.3 Finite-Size Scaling

Effective continuum field-theory studies as well as spin-wave theory and quan-
tum Monte Carlo (QMC) calculations have led to detailed predictions for the
low-energy physics and the finite-size scaling of Néel ordered quantum anti-
ferromagnets in two dimensions [35,44–47], which we will use below in (2.12),
(2.13) and (2.14). As already discussed in the last section the inverse ‘moment
of inertia’ is obtained from the QDJS and so the spin gap scales in leading
order with 1/N , see (2.10). However, for finite-lattice sizes accessible in exact
diagonalization the asymptotic behavior is often not reached and boundary
effects are important. Hence, the extrapolation to N → ∞ possesses some
uncertainty. According to [35, 44–47] the GS energy per site e0 = E0

N for a
semi-classical Néel state scales as

e0(L) = A0 +
A3

L3 +O(L−4) (2.12)

where L = N1/2 is the linear size of the lattice, A0 = e0(∞) and A3 is
proportional to the spin-wave velocity c. For the order parameter m+ we use

m+(L) = B0 +
B1

L
+O(L−2) (2.13)

where B0 = m+(∞). For the spin gap ∆ we apply
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∆(L) = G0 +
G2

L2 +O(L−3) (2.14)

whereG0 = ∆(∞). In case that there are many appropriate finite lattices with
N ≤ 36 the large number of data points leads to reliable extrapolation to the
thermodynamic limit [32,33]. On the other hand, for systems with only a few
appropriate finite lattices the extrapolation is much stronger influenced by
the boundary effects and the extrapolated results exhibit a larger uncertainty.
Furthermore, only the leading terms in (2.12), (2.13), (2.14) can be used in
case of a small number of data points. Particular problems may arise for the
spin gap: (i) Boundary effects are present in both E0 and E1 leading to a
larger error in E1 − E0. (ii) As discussed in the last section the first triplet
excitation belongs to the QDJS with a definite symmetry. However, it may
appear that this symmetry is not present in a certain finite lattice, i.e. the
calculated first excitation belongs to another symmetry and consequently it
has higher energy leading to an overestimation of the gap. Therefore the
extrapolation of the gap will not be a main focus of our discussion of the
ordering of the HAFM on the Archimedean tilings in Sect. 2.4.

We use only the leading terms even in case that the number of data points
would allow a scaling including next-to-leading term in order to have the same
systematics for all the 11 Archimedean tilings in the comparative discussion
given below. By way of illustration we compare the results obtained by both
variants of extrapolation for the square lattice (for a comparison with data
available in literature, see Sect. 2.4.1):

• GS energy per site: E0/N = −0.6701 (leading term only); E0/N =
−0.6685 (next-to-leading term included);

• singlet-triplet gap: ∆ = 0.0605 (leading term only); ∆ = 0.0247 (next-to-
leading term included);

• order parameter: m+ = 0.3173 (leading term only); m+ = 0.3235 (next-
to-leading term included).

For the extrapolation altogether 12 finite square lattices from N = 18 to N =
40 are used. the next-to-leading terms changes the energy by less than 0.2%
and the order parameter by less than 2%. The values for the extrapolated
gap can be understood as a measure of the accuracy of the extrapolation,
since we know that the excitations about a Néel ordered GS become gapless
for N →∞.

Finally, we mention that the finite-size scaling for systems with a critical
GS or with a GS having only short-range spin pair correlations 〈SiSj〉 can be
different from the above given relations. The concrete relations may depend
on details of GS correlations. Nevertheless one aspect shall be noted: due to
the absence of long-range correlations in 〈SiSj〉 the finite-size effects should
be weaker for the GS energy. As a simple example we can consider a HAFM
with a valence-bond GS as realized for the Shastry-Sutherland model for
stronger frustration (see Sect. 2.5). The GS energy per site is completely
independent of N in this case.
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2.4 Magnetic Ground-State Ordering for the Spin Half
HAFM on the Archimedean Lattices

In this section we present and discuss results obtained by exact diagonaliza-
tion for the 11 Archimedean lattices. For some of these lattices such studies
have not been performed so far or the presented results go beyond the system
sizes published until now. If available we also discuss results obtained by other
methods to get a reliable picture on the magnetic ordering. From our results
we conclude that three categories of ground state ordering appear: Collinear
two-sublattice Néel long-range order (LRO), non-collinear (multi-sublattice
Néel or spiral) LRO and quantum paramagnetic ground states without LRO
in the spin pair correlation 〈SiSj〉.

At first we consider in Sects. 2.4.1, 2.4.2 and 2.4.3 each lattice separately
and present results for the GS energy, the spin gap and the order parame-
ter as well as the spectrum. In a second step we summarize and compare in
Sect. 2.4.4 the magnetic ordering on the various Archimedean lattices. We re-
fer the reader who is not interested in the detailed discussion of the individual
lattices to Sect. 2.4.4.

2.4.1 Semi-classical Néel Ordering on Bipartite Lattices

The classical GS for bipartite lattices is the perfect Néel state having a
GS energy per bond Eclass

0 /bond = −s2 = −0.25 and an order parameter
m+

class = s = 0.5. However, this classical order is very sensitive to fluctuati-
ons. Indeed the 1D HAFM does not exhibit Néel LRO. For the 2D HAFM
we know from the Mermin-Wagner theorem [7] that at arbitrarily small fi-
nite temperatures T the thermal fluctuations are strong enough to destroy
the Néel LRO. However, it was for a long time an open question whether
also quantum fluctuations are able to destroy Néel LRO in 2D at absolute
zero. Each 2D lattice needs its individual consideration because the strength
of quantum fluctuations can vary from lattice to lattice. Stronger quantum
fluctuations appear in lattices with low coordination number z and in lattices
with non-equivalent NN bonds. Although this non-equivalency of NN bonds
is irrelevant for classical bipartite HAFM it leads to a competition between
the bonds in quantum models. This quantum competition favors local singlet
formation weakening that way Néel ordering (see, e.g. [27,48] and Sect. 2.5).

The Square Lattice (T2)

Starting from P.W. Anderson’s pioneering work [34], the spin half HAFM
on the square lattice has been studied over many decades. There are some
excellent reviews [1–3] which can be used to get more detailed information
on this work. Although till now there is no rigorous proof for the existence of
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Néel LRO7 after intensive studies over many decades it became clear in the
late eighties that there is no doubt of semi-classical Néel LRO at absolute
zero. The quantum fluctuations lead to a substantial renormalization of the
order parameter (sublattice magnetization), which amounts to about 60% of
the classical value. Experimentally there are some layered antiferromagnetic
inorganic materials like the parent compound La2CuO4 for high-Tc super-
conductors or Sr2CuO2Cl2 [2, 19, 53] but also organic compounds [54] which
are well described by the (quasi-)2D HAFM on the square lattice.

The spin half HAFM on the square lattice can serve as the canonical ex-
ample for a quantum HAFM on a 2D bipartite lattice. Already about ten
years ago Schulz and coworkers [55] published large-scale exact diagonaliza-
tion studies for the GS of systems up to N = 36. Recently Betts and co-
workers [33] have presented a systematic study of a complete set of all finite
square lattices up to N = 32. In particular, one finds in [33] a guideline how
to find systematically the so-called defining edge vector in finite lattices for
arbitrary dimension and type of lattice. We use this scheme to generate the
finite lattices discussed below. We have recalculated and extended Schulz’
and Betts’ results for systems up to N = 40 sites including the results for
the low-lying excitations. We have presented some of our results already in
Sects. 2.3.2 and 2.3.3.

The classical GS breaks the translational symmetry of the lattice. The
magnetic unit cell is twice as large as the geometric one. On a finite bipartite
lattice the quantum GS is a rotationally invariant singlet state (Lieb-Mattis
theorem [29]). As can be seen from Fig. 2.6a there is one QDJS in each sector
S (cf. Sect. 2.3.2) and the translational symmetry of the QDJS alternates
between Q0 = (0, 0) and Q1 = (π, π). Note that Q0 and Q1 are different in
the geometric but they coincide in the magnetic Brillouin zone. The energies
of the QDJS are well described by E0+S(S+1)/2Nχ0, see (2.10). The family
of one-magnon states is well separated from the QDJS. Their energies follow
the dispersion relation obtained by spin-wave theory, see Fig. 2.8. The lowest
singlet excitation is significantly above the first triplet excitation.

The GS energy, the first excitation and the square of the order parameter
for the largest lattices with N = 38 and N = 40 and for comparison for
N = 36 are given in Table 2.1. Furthermore, we present for the first time all
spin-spin correlations for N = 40 in Table 2.2. It is obvious that the decay
of the spin-spin correlations is weak.

Altogether 12 finite square lattices from N = 18 to N = 40 are used for
the extrapolation of the GS energy and the order parameter to infinite N
(see Figs. 2.20a and 2.21a). We compare our results with some corresponding
data obtained by other means:

7 We mention that the existence of Néel LRO was proven for the HAFM with
S ≥ 1 [49,50] and for the spin half anisotropic XXZ antiferromagnet [51,52] on
the square lattice.
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(LSWT) and higher-order spin-wave theory (SWT1) [56], the points are exact data
for finite lattices of size N = 16, 18, 32 und 36. The inset in the right part of the
figure shows the path through the Brillouin zone

Table 2.1. Ground-state energy E0 (singlet), singlet-triplet gap (spin gap) ∆ =
E0(S = 1) − E0 and square of the order parameter m2 ≡ (m+)2 of the HAFM on
finite square lattices with N = 38, N = 40 and N = 36 sites (the results for N = 36
are in agreement with those of [55]). (l11, l12) and (l21, l22) are the components of
the two edge vectors defining the finite 2D lattice

N l11 l12 l21 l22 E0 ∆ m2

36 6 0 0 6 −24.4393974 0.287538 0.20983715
38 1 7 −5 3 −25.7607925 0.272791 0.20751801
40 2 6 −6 2 −27.0948503 0.261623 0.20361937

Table 2.2. Ground-state spin-spin correlations 〈Sz
0S

z
R〉 = 1

3 〈S0SR〉 for all lattice
vectors R of the HAFM on a square lattice with N = 40 sites. Note that due to the
reduced symmetry of the finite lattice we have slightly different values for lattice
vectors R = (3, 1) and (3,−1) as well as for R = (1, 2) and (1,−2)

R (0, 0) (0, 1) (1, 1) (0, 2) (1,−2) (1, 2)
〈Sz

0S
z
R〉 0.250000 −0.112895 0.069066 0.061711 −0.059679 −0.059055
R (2, 2) (0, 3) (3, 1) (3,−1) (3,−2) (4,−2)

〈Sz
0S

z
R〉 0.053826 −0.055663 0.054700 0.052344 −0.052074 0.050275
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• GS energy per bond: our result: E0/bond = −0.3350; high-order SWT
[56]: E0/bond = −s2− 0.157948s− 0.006237+0.0000108/s = −0.335233;
QMC [47]: E0/bond = −0.334719; coupled cluster method (CCM) [57]:
E0/bond = −0.3349; series expansion [58]: E0/bond = −0.3347; previous
exact diagonalization up to N = 32 [33]: E0/bond = −0.33404;

• order parameter (sublattice magnetization): our result: m+ = 0.3173 ∼
0.635 m+

class; high-order SWT [56]: m+ = s−0.1966019+0.0000866(25)/s2

= 0.3037; QMC [47]: m+ = 0.3070; CCM [57]: m+ = 0.31; series expan-
sion [58]: m+ = 0.307; previous exact diagonalization up to N = 32 [33]:
m+ = 0.30676

(for the extrapolation of the gap, see Sect. 2.3.3). A more detailed collection
of results for the sublattice magnetization and the GS energy obtained by
different methods can be found in [33,57].

The existence of Néel LRO for the square lattice does not automatically
imply the conclusion, that all other bipartite lattices are also Néel long-
range ordered. Stronger quantum fluctuations can appear in lattices with
coordination number z < 4 and in lattices with non-equivalent NN bonds.

The Honeycomb Lattice (T3)

For this lattice the geometric and the magnetic (Néel state) unit cell are iden-
tical and include two sites. All NN bonds are equivalent but the coordination
number z = 3 is less than in the square lattice giving rise to stronger quan-
tum fluctuations. Nevertheless there is a lot of evidence obtained by several
methods [27,42,59–62] and also from the data presented below, that the GS
is a semi-classical Néel state.

The low-energy spectrum is shown in Fig. 2.9. The QDJS are well se-
parated from the other states and follow (2.10). Due to the coincidence of
geometric and magnetic unit cell they all have translational symmetry vector
Q = (0, 0). There are no low-lying singlets within the spin gap. The similarity
between the spectra of the square and the honeycomb lattice is obvious.

The largest lattice considered has N = 38 sites and is defined by the edge
vectors (3, 2); (−2, 5) and has GS energy E0/bond = −0.366768, spin gap
∆ = 0.213953 and square of the order parameter (m+)2 = 0.184396.

For the finite-size extrapolation of the GS energy (Fig. 2.20a), the spin
gap and the order parameter (Fig. 2.21a) we have used 14 finite lattices from
N = 6 up to N = 38. The extrapolation according to formulae (2.12), (2.13),
(2.14) leads to the following results:

• GS energy per bond: E0/bond = −0.3632
(for comparison: QMC [59]: E0/bond = −0.3630; 2nd order SWT [60]:
E0/bond = −s2 − 0.209842s − 0.0110084 = −0.365929; series expansion
[61]: E0/bond = −0.3629; CCM [27]: E0/bond = −0.3631);

• spin gap: ∆ = 0.0504
(for comparison: CCM [27]: ∆ = 0.02);
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Fig. 2.9. Low-energy spectrum for the HAFM on the honeycomb lattice with
N = 32 sites (the inset shows the k points in the Brillouin zone)

• order parameter: m+ = 0.2788 ∼ 0.558 m+
class

(for comparison: QMC [59]: m+ = 0.235; 2nd order SWT [60]: m+ =
0.2418; series expansion [61]: m+ = 0.266; CCM [27]: m+ = 0.28).

Obviously due to the lower coordination number the magnetization is appro-
ximately 10% smaller than for the square lattice, but the existence of Néel
LRO is not in question.

The CaVO (T11) and the SHD (T10) Lattices

Both these lattices have non-equivalent NN bonds and low coordination num-
ber z = 3 leading to strong quantum fluctuations. The lattice T11 has at-
tracted much attention since 1995 when in susceptibility measurements on
CaV4O9 [4] for the first time a rotationally invariant quantum paramagne-
tic GS with a finite spin gap of ∆ ≈ 110K was discovered experimentally
for a quasi-2D antiferromagnetic spin half system. The underlying lattice of
CaV4O9 is a 1/5 site-depleted square lattice which can be transformed by an
appropriate distortion to the Archimedean lattice T11 (see Fig. 2.10). We use
therefore the name ‘CaVO’ to denote this lattice. The experimental findings
stimulated a series of theoretical studies for the spin half HAFM on the CaVO
lattice [48,63–77]. The geometric unit cell of the CaVO lattice contains four
sites. However, the translational symmetry of the lattice and of the classical
Néel GS do not fit to each other and consequently the magnetic unit cell must
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Fig. 2.10. Arrangement of the V4+ atoms (points) in the V-O layers of CaV4O9

(left) and the corresponding Archimedean tiling T11 (right)
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Fig. 2.11. Low-energy spectrum for HAFM on the CaVO (T11) and on the SHD
(T10) lattice (the insets show the k points in the Brillouin zone). a: CaVO with
N = 32. b: SHD with N = 36.

be chosen as twice as large as the geometric one. This makes the symmetry
of the QDJS similar to that of the square lattice (see Figs. 2.11a and 2.6a).

The Archimedean lattice T10 is built by regular squares, hexagons and
dodecagons (SHD) and is therefore more complex than the CaVO lattice. As
far as we know till now no antiferromagnetic material was synthesized having
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the lattice structure of tiling 10. The low coordination number, the quantum
competition of non-equivalent NN bonds and the complex structure of the
lattice have stimulated the search for a possible non-Néel ordered GS for this
lattice [43, 78]. The geometric unit cell of the SHD lattice contains twelve
sites. The translational symmetry of the lattice and of the classical Néel GS
fit to each other leading to identical magnetic and geometric unit cell. Hence
the symmetry of the QDJS is similar to that of the honeycomb lattice (see
Figs. 2.11b and 2.9). The similarities between the spectra of the square and
the CaVO lattice as well as the SHD and the honeycomb lattice are obvious:
The QDJS are well separated from the other states and follow (2.10). There
are no low-lying singlets within the spin gap.

Since the magnetic unit cell contains 8 sites, the largest CaVO lattice we
consider has N = 32 sites and is defined by the edge vectors (2,−2); (2, 2). It
has GS energy per bond E0/bond = −0.372903, spin gap ∆ = 0.281788 and
square of the order parameter (m+)2 = 0.178018. The two non-equivalent NN
correlations functions for N = 32 are 〈SiSj〉J = −0.311103 for J bonds belon-
ging to squares and 〈SiSj〉J′ = −0.403803 for J ′ dimer bonds (cf. Fig. 2.10).

The largest SHD lattice considered has N = 36 sites and is defined
by the edge vectors (2, 1); (−1, 1). It has GS energy per bond E0/bond =
−0.373118, spin gap ∆ = 0.270929 and square of the order parameter
(m+)2 = 0.163243. The three non-equivalent NN correlations functions for
N = 36 are 〈SiSj〉SH = −0.414324 for NN bonds belonging to squares and
hexagons, 〈SiSj〉SD = −0.395046 for NN bonds belonging to squares and
dodecagons and 〈SiSj〉HD = −0.309984 for NN bonds belonging to hexagons
and dodecagons.

The finite-size extrapolation for the CaVO and even more for the SHD
lattice suffers from the restriction to a small number of unit cells in the
accessible finite lattices. Hence the extrapolation is particularly uncertain
and should be taken with extra care. For the finite-size extrapolation of the
GS energy (Fig. 2.20a), and the order parameter (Fig. 2.21a) according to
formulae (2.12), (2.13), (2.14) we use finite lattices of N = 16, 24, 32 (CaVO)
and N = 12, 24, 36 (SHD). The extrapolation leads to the following results
for the CaVO lattice:

• GS energy per bond: E0/bond = −0.3689
(for comparison: linear SWT [64]: E0/bond = −0.3584);

• spin gap: ∆ = 0.1149 (for comparison: QMC [48]: ∆ ∼ 0);
• order parameter: m+ = 0.2303 ∼ 0.461 m+

class
(for comparison: linear SWT [64]: m+ = 0.212; QMC [48]: m+ = 0.178)

and for the SHD lattice:

• GS energy per bond: E0/bond = −0.3713
(for comparison: variational (Huse-Elser) [78]: E0/bond = −0.3605; va-
riational (resonating valence bond (RVB)) [43]: E0/bond = −0.3688);

• spin gap: ∆ = 0.1435;
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• order parameter: m+ = 0.2126 ∼ 0.425 m+
class

(for comparison: variational (RVB) [43]: m+ = 0.2546).

Due to the competition between the bonds the order parameters for the CaVO
and the SHD lattice are smaller than for the honeycomb lattice. Neverthe-
less we find convincing evidence that the GS is semi-classically Néel ordered.
This conclusion is well supported by other methods [43, 48, 64, 66, 67, 72, 78].
However, the quantum competition between non-equivalent bonds leads to a
tendency to form local singlets either on neighboring bonds or along polygons.
In connection with the observed rotationally invariant quantum paramagne-
tic GS with a finite spin gap in CaV4O9 for the CaVO lattice a J − J ′-
HAFM with different strengths of NN bonds J and J ′ is considered, where
J is the NN bond belonging to a square and J ′ is the NN bond not belon-
ging to a dimer (Fig. 2.10). Within this model a quantum phase transition
between the semi-classical Néel ordered phase and a quantum paramagnetic
rotationally invariant singlet phase with gapped excitations is obtained. We
will discuss this J − J ′- HAFM and its quantum phase transition in more
detail in Sect. 2.5.

2.4.2 Semi-classical LRO on Frustrated Lattices

The classical GS for non-bipartite frustrated lattices may be collinear (weak
frustration) or non-collinear (strong frustration) and depends on the special
features of the lattice. The frustration may enhance the effect of quantum
fluctuations so that the magnetic order may be stronger weakened than for the
bipartite lattices. Thus the frustrated HAFM on 2D lattices is an interesting
candidate for a magnetic system with a quantum paramagnetic GS.

The Triangular Lattice (T1)

The triangular lattice is strongly frustrated but has largest coordination num-
ber z = 6 (see Fig. 2.2). Already in the 70ties Anderson and Fazekas [8, 9]
considered the spin half HAFM on the triangular lattice. They argued that
the GS for the 2D triangular lattice might be similar to that for the 1D HAFM
and proposed a spin-liquid like rotationally invariant resonating valence bond
GS instead of a semi-classical Néel state. Starting in the late eighties several
authors found, however, more and more evidence for a Néel ordered GS (see
e.g. [31, 36,37,79–86]).

The classical GS is a three-sublattice Néel state with an angle of 120◦ bet-
ween the spins of different sublattices (Fig. 2.12a). It breaks the translational
symmetry of the lattice. The energy per bond is Eclass

0 /bond = −s2/2 =
−0.125 and the order parameter is m+

class = 1
2

√
2/3 = 0.40825.

The magnetic unit cell is three times as large as the geometric one
and thus the QDJS belong to vectors Q1 = (0, 0), Q+

2 = (+4π/3, 0) and
Q−

2 = (−4π/3, 0). Low-lying states have been tabulated in [37], however for
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Fig. 2.12. The HAFM on the triangular lattice (T1). a: Classical GS. b: Low-
energy spectrum for N = 36 (the inset shows the k points in the Brillouin zone)

N = 36 only in the sector Q1 = (0, 0). Fig. 2.12b shows our results for the
low-lying states on the N = 36 lattice. Apparently, the QDJS are well sepa-
rated from the other states and follow (2.10) for S � 4. The lowest singlet
excitation energy is above the first triplet excitation. A special feature of the
E(S) behavior of the QDJS is a deviation from the linearity starting in the
vicinity of S = N/6. This comes from the Ising part of the Hamiltonian and
is connected with distinguished Ising states having two spins up and one spin
down per triangle [87,88] and results in a plateau in the magnetization versus
external magnetic field curve (for a more detailed discussion, see Sect. 2.6).
However, this peculiarity emerging around S(S + 1) = 42 in Fig. 2.12b is
relevant only if

√
N � N/6, i.e. for small N .

The largest lattice considered has N = 36 sites and is defined by the
edge vectors (6, 0); (0, 6). It has GS energy per bond E0/bond = −0.186791,
spin gap ∆ = 0.344211 and square of the order parameter (m+)2 = 0.124802
(cf. [37]). A detailed discussion of the spectra can be found in [31,36,37].

For the finite-size extrapolation of the GS energy (Fig. 2.20b), the spin
gap and the order parameter (Fig. 2.21b) we use only even finite lattices of
size N = 24, 30, 36. The extrapolation according to formulae (2.12), (2.13),
(2.14) leads to the following results:

• GS energy per bond: E0/bond = −0.1842
(for comparison: RVB [8]: E0/bond = −0.154; SWT [81]: E0/bond =
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−0.1823; former exact diagonalization [37]: E0/bond = −0.1815, Green’s
function Monte Carlo [84]: E0/bond = −0.1819; CCM [86]: E0/bond =
−0.1835);

• spin gap: ∆ = 0.1293;
• order parameter: m+ = 0.1577 ∼ 0.386 m+

class
(for comparison: sublattice magnetization msl = 〈Sz

i 〉 in SWT [81]: msl =
0.2387 = 0.4474 msl

class; Green’s function Monte Carlo [84]: msl = 0.205 =
0.41 msl

class; CCM [86]: msl = 0.2107 = 0.4214 msl
class).

Obviously, the extrapolated gap is quite large, whereas the order parameter is
smaller than that obtained by other means. This suggests stronger finite-size
effects than for bipartite lattices. Nevertheless, the existence of semi-classical
Néel LRO is not in question.

The Maple-Leaf (T4) and the Bounce (T7) Lattices

The maple-leaf lattice [89] is obtained from the triangular lattice by a 1/7
depletion of sites. Its geometric unit cell contains six sites and the underlying
Bravais lattice is a triangular one (cf. Fig. 2.13). It is also strongly frustrated
but has lower coordination number (z = 5) than the triangular lattice. Fur-
thermore, it has three non-equivalent NN bonds (solid, dashed and dotted
lines in Fig. 2.5). Thus the quantum fluctuations might be more important

β=2π/3
γ=4π/3

α=0

ε=3π/2
δ=5π/6

φ=π/6

A B C
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C A B
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Fig. 2.13. The classical GS of the HAFM on the maple-leaf lattice (T4). The
geometric unit cell is shown with dashed lines. The magnetic unit cell contains
three geometric unit cells labeled by A,B,C
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and the HAFM on the maple-leaf lattice was considered as a candidate for a
quantum paramagnet [90].

The bounce lattice is related to the maple-leaf lattice. It can be obtained
from the maple-leaf lattice by bond depletion as described in Sect. 2.2.2
(see Fig. 2.5). It has also a geometric unit cell with 6 sites, an underlying
triangular Bravais lattice and contains two non-equivalent NN bonds. The
coordination number z = 4 is lower than for the maple-leaf lattice but it is
less frustrated, since the omitted bond was a frustrating one. As far as we
know no antiferromagnetic material has, as yet, been synthesized with the
lattice structure of tilings 4 or 7.

The classical GS of the maple-leaf lattice is a six-sublattice Néel state
shown in Fig. 2.13 with Eclass

0 /bond = −s2(
√

3 + 1)/5 = −0.13660 and
m+

class = 0.39434. The less frustrated bounce lattice has also a six-sublattice
Néel GS with a 120◦ structure on each triangle and a collinear up-down
structure on each hexagon leading to Eclass

0 /bond = −2s2/3 = −0.16667
and m+

class = 1/
√

6 = 0.40825. Both classical GSs break the translational
symmetry of the lattice, the corresponding magnetic unit cell is three times
as large as the geometric one and contains 18 sites. Therefore the applicability
of finite-size calculations is particularly limited.

The low-lying spectra for both lattices with N = 36 sites are shown
in Fig. 2.14. The lowest states in each sector of S are QDJS belonging to
appropriate symmetries Q1 = (0, 0) and Q+

2 = (+4π/3, 0), Q−
2 = (−4π/3, 0).

They follow (2.10). The lowest singlet excitation energy is above the first
triplet excitation.

The largest finite lattices considered have N = 36 sites and are defined by
the edge vectors (3, 0); (1, 2) for both tilings. Note that these finite lattices do
not have the full symmetry of the corresponding infinite lattices. The N = 36
maple-leaf lattice has GS energy per bond E0/bond = −0.215589, spin gap
∆ = 0.400009 and square of the order parameter (m+)2 = 0.106101. A
picture of this lattice and a table of the correlation functions are given in [90].
The non-equivalent NN bonds lead to different NN correlations: 〈SiSj〉T =
−0.1777 (belonging to a dashed line in Fig. 2.5, middle), 〈SiSj〉H = −0.3656
(belonging to a solid line in Fig. 2.5, middle) and 〈SiSj〉D = 0.0086 (belonging
to a dotted line in Fig. 2.5, middle).8 It appears that the correlation functions
of the quantum system fit quite well to the classical GS.

The N = 36 bounce lattice has GS energy per bond E0/bond =
−0.286540, spin gap ∆ = 0.445138 and square of the order parameter
(m+)2 = 0.119073. The non-equivalent NN bonds lead to different NN cor-
relations: 〈SiSj〉T = −0.1723 (belonging to a dashed line in Fig. 2.5 right)
and 〈SiSj〉H = −0.4008 (belonging to a solid line in Fig. 2.5 right). The

8 Note that these values and the corresponding values for the bounce lattice are
averaged values, since the N = 36 lattices do not have all lattice symmetries of
the infinite lattice. As a result one has to average over three different values for
a certain correlation function.
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Fig. 2.14. Low-energy spectrum for HAFM on the maple-leaf (T4) and on the
bounce (T7) lattice (the insets show the k points in the Brillouin zone). a: maple-
leaf lattice with N = 36. b: bounce lattice with N = 36

correlation function of the omitted bond (see Fig. 2.5) is 〈SiSj〉D = 0.1116.
It is obvious that the NN correlations 〈SiSj〉D and 〈SiSj〉H are enhanced by
omitting the frustrating bond, whereas 〈SiSj〉T remains almost the same.

We use finite maple-leaf lattices and bounce lattices of size N = 18 and
36 for the finite-size extrapolation of the GS energy (Fig. 2.20b), the spin
gap and the order parameter (Fig. 2.21b). By using formula (2.12), (2.13)
and (2.14) we obtain for the maple-leaf lattice:

• GS energy per bond: E0/bond = −0.2171
(for comparison: SWT [90]: E0/bond = −0.20486; variational [90]: E0/
bond = −0.1988);

• spin gap: ∆ = 0.2548;
• order parameter: m+ = 0.0860 ∼ 0.218 m+

class
(for comparison: sublattice magnetization msl = 〈Sz

i 〉 in SWT [90]: msl =
0.154 = 0.308 msl

class).

An extrapolation of the gap based on a variational approach was presented
in [90] and leads to ∆ = 0.0180.

The corresponding extrapolation for the bounce lattice yields:

• GS energy per bond: E0/bond = −0.2837;
• spin gap: ∆ = 0.2926;
• order parameter: m+ = 0.1095 ∼ 0.268 m+

class.
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Obviously, the extrapolated order parameters are small but finite. The fact
that the order parameter for the bounce lattice is larger than for the maple-
leaf lattice seems to be related to the lower frustration. Taking into consi-
deration results of the spin-wave theory and the variational approach pre-
sented for the maple-leaf lattice in [90] we conclude that the semi-classical
six-sublattice Néel LRO survives for both lattices. However, this statement
needs confirmation by further studies.

The Trellis Lattice (T5)

The trellis lattice is to some extent exceptional since its structure corresponds
to a system of coupled ladders or alternatively of coupled zigzag chains. Its
geometric unit cell contains 2 sites (cf. Fig. 2.15a). It has the same coordi-
nation number z = 5 as the maple-leaf lattice but its frustration is slightly
smaller (cf. Fig. 2.2). Furthermore, it has three non-equivalent NN bonds,
labeled by J1, J2 and J3 in Fig. 2.15a.

The HAFM on the trellis lattice is related to the magnetism of SrCu2O3,
CaV2O5 and MgV2O5 [91, 92]. However, the J1, J2 and J3 bonds are not
of equal strength in these materials (for instance in SrCu2O3 the zigzag J1
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Fig. 2.15. The trellis lattice (T5). a: Illustration of the lattice with basis vectors
b1 and b2, geometric unit cell (dashed) and the non-equivalent NN bonds J1, J2

and J3. In the classical GS the spins form a spiral along the zigzag chains (J1, J2

bonds) whereas the spins along a J3 bond are antiparallel. b: Low-energy spectrum
for N = 28 (the inset shows the k points in the Brillouin zone)
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coupling is weak leading to a quasi-1D ladder structure). The classical GS
is a Néel state for J2 < J1/4, and is an incommensurate spiral state along
the zigzag chains (x-direction) for J2 > J1/4, where the angles between
neighboring bonds are α2 = 2 arccos (J1/4J2) (J2 bond), α1 = π + α2/2
(J1 bond) and α3 = π (J3 bond). This leads to a classical GS with pitch
angles α1 = π+arccos (1/4) = 1.41957π; α2 = 2 arccos (1/4) = 0.83914π, GS
energy per bond Eclass

0 /bond = −0.65s2 = −0.1625 and m+
class = 0.39894 for

the perfect lattice (J1 = J2 = J3).
The incommensurability of the classical GS creates additional difficul-

ties applying exact diagonalization for finite lattices since the classical pitch
angles α1 and α2 may be in conflict with periodic boundary conditions. In
order to minimize this boundary effect we consider only finite lattices of
N = 20, 28 and 36 sites having pitch angles α

(N)
2 deviating by not more

than 6% from the true values α2. The N = 36 lattice is defined by the edge
vectors (9, 0); (−1, 2) and has a pitch angle α

(36)
2 = 1.059α2. Its GS energy

per bond is E0/bond = −0.247578, spin gap ∆ = 0.605227 and square of the
order parameter (m+)2 = 0.109897. The three non-equivalent NN correlati-
ons functions for N = 36 are 〈SiSj〉J1 = −0.098835, 〈SiSj〉J2 = −0.283938
and 〈SiSj〉J3 = −0.472341 (cf. Fig. 2.15a).

In Fig. 2.15b the QDJS are shown. Although the boundary conditions
are not perfect it can be seen that the QDJS are separated from the other
states and follow approximately (2.10). The lowest singlet excitation is above
the first triplet excitation. The translational symmetry of the QDJS is more
complex than in the other lattices. It is connected with the q vector of the
spiral state. We find Qy = 0, π and Qx = 6π(N/2−S)/7 mod 2π for N = 28
and Qx = 8π(N/2− S)/9 mod 2π for N = 36.

For the finite-size extrapolation of the GS energy (Fig. 2.20b), the spin
gap and the order parameter (Fig. 2.21b) we use finite lattices of size N =
20, 28, 36. The extrapolation according to formulae (2.12), (2.13), (2.14) leads
to the following results:

• GS energy per bond: E0/bond = −0.2471;
• spin gap: ∆ = 0.49;
• order parameter: m+ = 0.0885 ∼ 0.222 m+

class.

Although our data do not allow a secure conclusion the results are in favor of
a spiral long-range ordered phase. This conclusion is in agreement with the
findings in [91] based on a Schwinger boson technique and linear spin-wave
theory.

The SrCuBO Lattice (T6)

The SrCuBO lattice is weakly frustrated, has four sites in the geometric unit
cell and two non-equivalent NN bonds J1 and J2 (see Fig. 2.16a, top). It
can be transformed by an appropriate distortion to a square lattice with one
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Fig. 2.16. The SrCuBO lattice (T6). a: Comparison of the SrCuBO lattice (above)
and the Shastry-Sutherland model (below). The unit cell is illustrated by the dashed
square. b: Low-energy spectrum for N = 32 (the inset shows the k points in the
Brillouin zone)

diagonal bond in each second square (see Fig. 2.16a, bottom). This frustra-
ted square lattice is known as Shastry-Sutherland model [93, 94] introduced
in the 80ties as a 2D spin half HAFM with an exactly known quantum GS.
Indeed for large frustrating J2 the GS is a so-called orthogonal dimer product
state with dimer singlets on each J2 bond. Although the Shastry-Sutherland
model initially was understood as a ‘toy model’ it has attracted much rene-
wed attention as it provides a representation of the magnetic properties of
the recently discovered 2D spin gap system SrCu2(BO3)2 [5, 95]. The expe-
rimental findings stimulated a series of theoretical studies for the spin half
HAFM on the SrCuBO lattice with varying bonds J1, J2, see [96–104] and
the recent review [105]. We will discuss the GS phase diagram in the J1− J2
plane below in Sect. 2.5. In this section we consider J1 = J2, only. In this
case the classical GS is the two-sublattice Néel state with energy per bond
Eclass

0 /bond = −0.6s2 = −0.15 and with order parameter m+
class = 0.5. The

geometric unit cell of the SrCuBO lattice contains four sites and the transla-
tional symmetry of the lattice and of the classical Néel GS fit to each other.
The spectrum of the SrCuBO lattice (Fig. 2.16b) is therefore comparable
with that of the honeycomb lattice (Fig. 2.9). The QDJS are well separated
from the other states and follow (2.10). The lowest singlet excitation is above
the first triplet.
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The largest lattice considered with N = 36 sites is defined by the edge vec-
tors (3, 0); (0, 3) and has GS energy per bond E0/bond = −0.233410, spin gap
∆ = 0.319735 and square of the order parameter (m+)2 = 0.169048, that is
80% of the order parameter of the corresponding square lattice. The two non-
equivalent NN correlations functions for N = 36 are 〈SiSj〉J1 = −0.332886
(almost the same as for the square lattice) and 〈SiSj〉J2 = 0.164493.

For the finite-size extrapolation of the GS energy (Fig. 2.20b), the spin
gap and the order parameter (Fig. 2.21b) we use finite lattices of size N = 20,
32 and 36. The extrapolation according to formulae (2.12), (2.13), (2.14) leads
to the following results:

• GS energy per bond: E0/bond = −0.2310
(for comparison: series expansion [96]: E0/bond = −0.231; Schwinger bo-
son mean field [94]: E0/bond = −0.231; CCM [106]: E0/bond = 0.2311);

• spin gap: ∆ = 0.0927;
• order parameter: m+ = 0.2280 ∼ 0.456 m+

class
(for comparison: series expansion [96]:m+ = 0.200; Schwinger boson mean
field [94]: m+ = 0.203; CCM [106]: m+ = 0.211).

Due to frustration the order parameter is only about 70% of that of the
square lattice but it is the largest one of all frustrated lattices. There is no
doubt of semi-classical GS Néel order for this lattice. This conclusion is in
agreement with several other studies like series expansion [96, 97, 99] and
bosonic representations [94, 104]. However, the Néel LRO is destroyed by
further increasing the frustrating bond J2 (see Sect. 2.5).

2.4.3 Absence of Semi-classical LRO on Frustrated Lattices –
The Kagomé (T8) and the Star (T9) Lattices

Among the non-bipartite frustrated lattices the kagomé9 and the star lat-
tice play an exceptional role. The kagomé lattice is strongest frustrated (as
strong as the triangular lattice) and has low coordination number z = 4, cf.
Fig. 2.17. It can be obtained by a 1/4 site depletion or alternatively by a 1/3
bond depletion (with an appropriate subsequent distortion) of the triangular
lattice. Whereas the triangles in the kagomé lattice are corner sharing, they
are separated by a dimer in the star lattice. Its degree of frustration is less
than for the kagomé lattice but it has an even lower coordination number
z = 3 and two non-equivalent NN bonds JD and JT , cf. Fig. 2.18. As indica-
ted in Fig. 2.3, the star lattice can be obtained by a 2/5 bond depletion of
the maple-leaf (T4) or alternatively by a 1/4 bond depletion of the bounce
lattice (T7) with an appropriate subsequent distortion. Both the kagomé and
the star lattices are characterized by strong quantum fluctuations.

After realizing in the early nineties that the quantum GS of the HAFM on
the triangular lattice is Néel ordered the HAFM on the kagomé lattice came
9 The name kagomé stems from the Japanese language and means a bamboo-basket

woven pattern [107].
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into the focus of interest as a hot candidate for a 2D quantum spin system
with an exotic non-Néel ordered GS [36, 38, 39, 86, 108–120]. Indeed, most of
the recent investigations are in favor of a quantum paramagnetic GS, although
its nature is far from being well understood. A possible physical realization
of the kagomé HAFM is SrCrGa oxide, which is, however, a layered kagomé
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HAFM with spin 3/2 [121,122]. A novel spin-1/2 kagomé like HAFM has been
found recently in volborthite Cu3V2O7(OH)2 · 2H2O [123]. By contrast, the
spin half HAFM on the star lattice has not been considered in the literature
so far, nor is a physical realization currently known. However, we mention
that a projection of the three-dimensional non-frustrated magnetic compound
green dioptase Cu6Si6O18 · 6H2O has the shape of the star lattice [124].

The geometric unit cell of the kagomé (star) lattice contains three (six)
sites and the underlying Bravais lattice is a triangular one (cf. Figs. 2.17
and 2.18). The classical GS for the kagomé lattice was studied in [125–127].
In analogy to the triangular lattice the angle between neighboring spins is
120◦. Its energy per bond is Eclass

0 /bond = −s2/2 = −0.125. However, in
contrast to the triangular lattice there is a non-trivial infinite degeneracy of
the classical GS typical for a classical HAFM with corner-sharing triangles.

In the classical GS of the star lattice the two non-equivalent NN bonds
carry different NN spin correlations: the angle between neighboring spins
on dimer bonds JD is 180◦, whereas the angle on triangular bonds JT is
120◦. Its energy per bond is Eclass

0 /bond = −2s2/3 = −0.1667. Although the
star lattice is not built by corner-sharing triangles, the classical GS for this
lattice also exhibits a non-trivial infinite degeneracy very similar to that of
the kagomé lattice.

Two particular variants of the classical GS characterized by a certain
wave vector are shown in Figs. 2.17 and 2.18. The states on the left side
of Figs. 2.17 and 2.18 exhibit the same symmetry as the classical GS for
the triangular lattice having a magnetic unit cell three times as large as the
geometric unit cell (so-called

√
3×
√

3 state). The states on the right side of
Figs. 2.17 and 2.18 have the same translational symmetry as the lattice (so-
called q = 0 state) and therefore the magnetic and the geometric unit cell
are identical. Both states are highly degenerate as indicated by the dotted
elliptic lines at the top of spins.

Let us consider the order parameter (2.9) for the classical GS. If we take
the perfect ordered planar

√
3×
√

3 and q=0 state, then we get for both
lattices m+

class,
√

3×
√

3
= m+

class,q=0 = 1
2

√
2/3 = 0.40825. However, one has to

take into account the high degeneracy of the GS. In order to average over
these degenerate states we performed numerical calculations of the ground
states for classical systems of up to N = 432 sites. The numerical results
lead to the conclusion that for large N we have m+

class,averaged = 0.25 for
both lattices. This corresponds to a GS phase with decoupled spins for larger
spin-spin separations.

In the quantum case the largest kagomé lattice considered has N = 36
sites and is defined by the edge vectors (4, 2); (2, 4). It has GS energy per
bond E0/bond = −0.219188, spin gap ∆ = 0.164190 and square of the order
parameter (m+)2 = 0.076630. We mention that the result for E0/bond was
already given in [39,111].
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Fig. 2.19. Low-energy spectrum for HAFM on the kagomé (T8) and on the star
(T9) lattice (the insets show the k points in the Brillouin zone). a: kagomé with
N = 36. b: star with N = 30

The largest star lattice considered has N = 36 sites and is defined by the
edge vectors (2, 0); (1, 3). It has GS energy per bond E0/bond = −0.310348,
spin gap ∆ = 0.480343 and square of the order parameter (m+)2 = 0.082299.
Note that the value of the spin gap is particularly large. The only N = 36
lattice having a larger spin gap is the trellis lattice for which, however, the
large spin-gap is most likely a finite-size artifact due to the incommensurate
structure of the states. The two non-equivalent NN correlation functions for
N = 36 are 〈SiSj〉JT

= −0.170339 (that is weaker than for the kagomé and
the triangular lattice) and 〈SiSj〉JD

= −0.590367.10 We mention that the
NN correlation 〈SiSj〉JD

is the strongest correlation we found in all lattices,
thus indicating a strong tendency to form local singlets on the JD bonds.

The spectra of both lattices are shown Fig. 2.19. For both spectra it is
obvious that the lowest states Emin(S) are not well described by (2.10). In
particular, the lowest states belonging to S = 0 and S = 1 deviate signifi-
cantly from a straight line. We do not see well separated QDJS as well as
spin-wave excitations. Furthermore, the symmetries of the lowest states in
each sector of S cannot be attributed to the classical

√
3×
√

3 or q=0 ground
states in general. The kagomé lattice is an exceptional case in that a large
number of non-magnetic singlets fill the singlet-triplet gap. For instance for
10 Note that these values are averaged values, since the N = 36 star lattice does not

have all lattice symmetries of the infinite lattice. As a result one has to average
over two different values.
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N = 27 there are 153 [39] and for N = 36 on finds 210 [11] non-magnetic
excitations within the spin gap and in the thermodynamic limit possibly a
gapless singlet continuum. This unusual number of low-lying singlets is at-
tributed to the non-trivial huge degeneracy of the classical GS. By contrast,
the star lattice does not show low-lying singlets. This can be attributed to
the special property of the quantum GS to form local singlets on the JD

bonds which somehow makes the singlet GS of the star lattice exceptional.
As a consequence, the quantum GS of the star lattice has lowest energy per
bond among all frustrated lattices and is well separated from the excitations.
Especially the first singlet excitation has comparably high energy.

We mention that a detailed discussion of the spectrum for the kagomé
lattice was given in [38,39].

For the finite-size extrapolation of the GS energy (Fig. 2.20b), the gap and
the order parameter (Fig. 2.21b) we use finite lattices of size N = 12, 18, 24,
30 and 36 (kagomé) and of N = 18, 24, 30 and 36 (star). The extrapolation
leads to the following results for the kagomé lattice:

• GS energy per bond: E0/bond = −0.2172
(for comparison: SWT [109]: E0/bond = −0.2353; former exact diagona-
lization (N = 9, . . . , 21) [108]: E0/bond = −0.217; CCM [86]: E0/bond =
−0.2126; Green’s function decoupling [115,120]: E0/bond = −0.215);

• spin gap: ∆ = 0.0397;
• order parameter: m+ = 0.000 ∼ 0.0 m+

class.
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Fig. 2.20. Finite-size extrapolations of GS energy per bond E0/bond, a: bipartite
lattices, b: frustrated lattices
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Fig. 2.21. Finite-size extrapolations of m+, a: bipartite lattices, b: frustrated
lattices

In fact, the extrapolation gives the unphysical value m+ = −0.0146 < 0 (cf.
Fig. 2.21b). We interpret this as vanishing order parameter.

For the star lattice we obtain:

• GS energy per bond: E0/bond = −0.3093;
• spin gap: ∆ = 0.3809;
• order parameter: m+ = 0.0385 ∼ 0.094 . . . 0.150 m+

class (the first value
corresponds to m+

class = 0.40825 of the perfect ordered planar
√

3×
√

3
and q=0 classical GS, see Fig. 2.18, whereas the second value corresponds
to m+

class,averaged = 0.25 obtained by averaging over all degenerate classical
ground states).

The extrapolated spin gap for the kagomé lattice is small but finite and
corresponds to the values reported in the literature (see e.g. [12]), but we
should remark that the existence of a spin gap at all is not a fully secure
statement.

For both lattices the exact diagonalization data yield indications for a
quantum paramagnetic GS. For the kagomé lattice this statement is known
from detailed studies by C. Lhuillier, H.-U. Everts and coworkers as well as
other groups published over the last 10 years. However, the star lattice repre-
sents a new example for a quantum HAFM on a uniform 2D lattice without
semi-classical GS ordering. We emphasize that the quantum paramagnetic
GS for the star lattice is different in nature to the quantum GS for the ka-
gomé lattice. The quantum GS for the star lattice is characterized by an
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extremely strong NN correlation on the dimer bonds (more than 60% larger
than the NN correlation of the honeycomb lattice having the same coordi-
nation number z = 3) and a weak NN correlation on the triangular bonds
(only about 30% of the NN dimer correlation and significantly weaker than
the triangular NN correlation of the kagomé and the triangular lattices). The
singlet-triplet spin gap is particularly large (about ten times larger than that
for the kagomé lattice). Although the classical GS exhibits a huge non-trivial
degeneracy, remarkably one does not find low-lying singlets within this large
spin gap, rather the first singlet excitation is well above the lowest triplet
state. The low-lying spectrum as a whole resembles the spectrum of weakly
coupled dimers [18]. All these features support the conclusion that the quan-
tum GS of the HAFM on the star lattice is dominated by local singlet pairing
and represents a so-called valence-bond crystal state (see also Sect. 2.4.4).

2.4.4 Summary and Comparison

Based on extensive exact diagonalization studies and on available results in
the literature we discuss the GS ordering of the spin half HAFM on the
11 uniform Archimedean tilings in two dimensions. Of course we are not
able to clarify all aspects of the GS properties of these quantum many-body
systems. Nevertheless the comparative discussion of the 11 lattices leads to
conclusions on the influence of lattice structure on GS magnetic ordering
in two dimensions and this way on the existence or absence of semi-classical
LRO in these systems. The HAFM has been already studied intensively in the
literature for some of these lattices (square (T2), triangular (T1), honeycomb
(T3), kagomé (T8), SrCuBO (T6), CaVO (T11)) and the physical picture
seems to be more or less clear for those lattices. For some other lattices (SHD
(T10), maple-leaf (T4) and trellis (T5)) only a few results are available in
the literature so far and the conclusions on the GS ordering are less reliable.
The HAFM on the star lattice (T9) as well as on the bounce lattice (T7) has
not been studied till now.

Let us summarize the results of the preceding sections: The GS of the spin
half HAFM on the bipartite (i.e. non-frustrated) lattices is semi-classically
Néel ordered. The reduction of the order parameter by quantum fluctuati-
ons depends on the coordination number and on the competition of non-
equivalent NN bonds (cf. Table 2.3). The low-energy spectra exhibit some
typical features for magnetic systems with semi-classical order, namely well
separated quasi-degenerate joint states (QDJS) with symmetries belonging
to the classical GS ordering. Another indication for semi-classical ordering
is the disappearance of the spin gap in the thermodynamic limit. We find,
at least for the lattices with not too large unit cells, indications for a vanis-
hing spin gap. However, the finite-size extrapolation of the spin gap is less
reliable than for the magnetization (see Sect. 2.3.3) and therefore we do not
consider the spin gap as a main criterion for the existence of semi-classical
LRO. The comparison of the finite-size behavior of the GS energy shown in
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Table 2.3. Comparison of the ground-state energy per bond E0/bond and the or-
der parameter m+ (2.9) of the spin half HAFM obtained by finite-size extrapolation
(see text). In order to see the effect of quantum fluctuations, we present m+ scaled
by its corresponding classical value m+

class. Furthermore, we show the coordination
number z and indicate, whether all NN bonds are equivalent or not by EQ and NEQ,
respectively. For the star lattice (last row) the first value corresponds to m+

class of
the perfect ordered planar

√
3×√

3 and q=0 classical GS, see Fig. 2.18, whereas
the second value corresponds to m+

class averaged over all degenerate classical ground
states

tiling z NN bonds E0/bond m+/m+
class

bipartite
square (T2) 4 EQ −0.3350 0.635
honeycomb (T3) 3 EQ −0.3632 0.558
CaVO (T11) 3 NEQ −0.3689 0.461
SHD (T10) 3 NEQ −0.3713 0.425
frustrated
SrCuBO (T6) 5 NEQ −0.2310 0.456
triangular (T1) 6 EQ −0.1842 0.386
bounce (T7) 4 NEQ −0.2837 0.286
trellis (T5) 5 NEQ −0.2471 0.222
maple-leaf (T4) 5 NEQ −0.2171 0.218
kagomé (T8) 4 EQ −0.2172 0.000
star (T9) 3 NEQ −0.3093 0.094 . . . 0.150

Fig. 2.20 shows that the extrapolation coefficient A3 (cf. (2.12)) for the bipar-
tite lattices is largest in agreement with long-ranged spin-spin correlations.
We mention that a suppression of semi-classical LRO in bipartite lattices can
appear in systems with NN bonds of different strength this way increasing
the competition of non-equivalent NN bonds (see Sect. 2.5).

The situation for the frustrated lattices is more complex. Some of the
criteria for semi-classical LRO might be weaker pronounced. For the HAFM
on the kagomé and on the star lattice we find evidence for a quantum para-
magnetic GS whereas for the other frustrated lattices there are indications
for semi-classical LRO. Although the order parameter m+ is additionally
weakened by the interplay of quantum fluctuations and frustration the ex-
trapolated values of m+ remain finite (between 22% and 45% of the classical
values) for the tilings T1,T4,T5,T6,T7. It vanishes however for the kagomé
lattice and is at least very small for the star lattice (see Table 2.3, Fig. 21).
Except for the kagomé and the star lattices the low-energy spectra exhibit
some typical features for magnetic systems with semi-classical order, namely
well separated QDJS with symmetries belonging to the classical GS ordering.
The comparison of the finite-size behavior of the GS energy (Fig. 2.20) shows
the smallest extrapolation coefficient A3 for the kagomé and the star lattice
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being in agreement with short-range spin-spin correlations. Although the ex-
trapolation coefficient A3 is very small for the trellis lattice, too, we interpret
this as a particular finite-size effect due to the incommensurate structure of
the classical GS.

We conclude that the interplay of lattice structure and quantum fluc-
tuations may lead to a non-classical quantum paramagnetic singlet GS for
frustrated lattices with low coordination number and strong frustration, i.e.
for the kagomé and the star lattice (see Fig. 2.22). Although extensive studies
have been performed for the kagomé lattice [36, 38, 39, 86, 108–120], the spin
half HAFM on the star lattice is considered in this article for the first time.
By contrast with all the other lattices, the kagomé and the star lattice show
a huge non-trivial degeneracy of the classical GS due to strong frustration.
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Fig. 2.22. Border line between semi-classical magnetic order and quantum ma-
gnetic disorder in a parameter space spanned by frustration (classical GS energy
per bond divided by s2, see Sect. 2.2.1) and coordination number z. The numbers
indicate the location of the Archimedean tilings in this parameter space

Although there is no semi-classical GS order for both lattices, the nature
of both quantum ground states is basically different in the quantum case. We
argue that the origin for this difference lies in the existence of non-equivalent
NN bonds in the star lattice whereas all NN bonds in the kagomé lattice are
equivalent. That leads also to significant differences in the low-lying spectrum
of both lattices. The kagomé lattice has probably a finite spin gap, but within
this spin gap a large number (increasing exponentially with system size) of
low-lying singlets appear [38,39,113] which seem to be a remnant of the non-
trivial classical GS degeneracy. However, the HAFM on the star lattice has
a particularly large spin gap but also a well pronounced singlet-singlet gap
(even larger than the spin gap) which is in accord with a GS dominated by
local singlet pairing on non-equivalent NN JD bonds assisted by frustration.
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As a consequence, the huge classical GS degeneracy has no remnant in the
spectrum of the quantum model. We mention that the checkerboard (planar
pyrochlore) lattice is another example, where the non-trivial classical GS
degeneracy does not lead to a continuum of low-lying singlets and the ground-
state is most likely a valence bond crystal (see e.g. [128, 129]). Furthermore,
examples are known that many low-lying non-magnetic excitations within the
spin gap may appear although the classical GS is not non-trivially degenerate
[41,130].

For all the other bipartite and frustrated lattices the quantum fluctuati-
ons seem to be not strong enough to destroy the classical order. However, we
should again emphasize that our conclusions about semi-classical LRO pos-
sesses some uncertainty, in particular for the trellis, maple-leaf and bounce
lattices.

The above presented study provides some criteria for the appearance of
novel quantum ground states in 2D spin systems. Although only for a few of
the lattices under consideration direct realizations in real materials have been
found till now, in several cases slightly modified models, e.g. models with NN
couplings of non-equal strength or with inclusion of next-nearest neighbor
couplings, are appropriate for the description of real magnetic substances.

At the end of this paragraph we will classify the magnetic ordering on the
11 Archimedean tilings using the four basic types of low-energy physics in
2D isotropic quantum antiferromagnets proposed and described recently by
Lhuillier, Sindzingre, Fouet and Misguich [11–15]. The first type of GS phases
is the semi-classical LRO (collinear or noncollinear). Most of the lattices
belong this class, namely all bipartite lattices (T2,T3,T10,T11) but also the
frustrated tilings (T1,T4,T5,T6,T7). The GS of the HAFM on these lattices
breaks the SU(2) symmetry. The low-lying excitations are gapless Goldstone
modes (magnons). As discussed above, the order parameter is reduced by
quantum fluctuations. The three other types of GS phases, namely the so-
called valence bond crystal, type I spin liquid and type II spin liquid are
purely quantum.

The so-called valence bond crystal is a phase characterized by the forma-
tion of local singlets with high binding energy built by an even number of
spins (most likely by two or four spins) connected by NN bonds (singlet ‘va-
lence bonds’). The correlation between the singlets is weak leading to a fast
exponential decay of the spin pair correlation to zero. The GS is a rotationally
invariant singlet of the total spin without SU(2) symmetry breaking. Howe-
ver, breaking of translational symmetry of the lattice is possible but not ne-
cessary. The valence bond crystal possesses long-range singlet-singlet (dimer-
dimer or plaquette-plaquette) correlations. All excitations above the GS are
gapped leading to an exponential (i.e. thermally activated) low-temperature
behavior of the specific heat c and of the susceptibility χ. A candidate for
such a GS phase is the HAFM on the star lattice. For this lattice the pos-
sible dimer-dimer LRO would fit to the lattice geometry. Another candidate
is the J1 − J2 model on the square lattice, widely discussed in the litera-
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ture (see [85, 131] and references therein), where the valence bond crystal
phase would break the translational symmetry of the lattice. The type I spin
liquid has some similarity to the valence bond crystal. It has also a rotatio-
nally invariant singlet GS without SU(2) symmetry breaking, it has a fast
exponential decay of the spin pair correlation to zero and gapped excitations
leading to thermally activated low-temperature behavior of c and χ. However,
the GS does not possess singlet-singlet long-ranged correlations but is likely
to be characterized by short ranged resonating valence bonds. There is no
good candidate for this phase among the Archimedean tilings. But this phase
might be realized in the J1−J2 model on the honeycomb lattice [42]. The type
II spin liquid has also a rotationally invariant singlet GS, a fast exponential
decay of the spin pair correlation to zero and no long-ranged singlet-singlet
correlations. The spin gap ∆ to the first triplet excitation is finite giving rise
to a thermally activated low-temperature behavior of the susceptibility χ.
However, there is a gapless continuum of singlets which could be described
by a family of short-ranged valence bond states [116] the number of which is
exponentially growing with size N . This gapless continuum implies that the
system has a zero-temperature residual entropy and that the low-temperature
specific heat is not thermally activated. The best candidate for this type of
spin liquid is the spin half HAFM on the kagomé lattice.

2.5 Quantum Phase Transitions in 2D HAFM –
The CaVO J − J ′ Model
and the Shastry-Sutherland Model

Phase transitions have been a subject of great interest to physicists over many
decades. Besides thermal phase transitions, the so-called quantum phase tran-
sitions (or zero-temperature transitions) have started to attract a lot of at-
tention (see chapter by S. Sachdev in this book). For zero-temperature order-
disorder transitions we basically need the interplay between the interparticle
interactions and quantum fluctuations. Canonical models to discuss quantum
phase transitions are quantum spin models. As discussed above the HAFM
on most of the 2D lattices possesses semi-classical LRO in the GS, but the in-
terplay of quantum fluctuations and strong competition between bonds may
suppress this order. The competition may appear either as frustration or by
non-equivalent NN bonds or a combination of both. Indeed, the strength of
this competition may serve as the control parameter of a zero-temperature
order-disorder transition. It can be tuned by changing the relative magni-
tude of non-equivalent NN bonds or by introducing next-nearest neighbor
bonds. The Archimedean tilings therefore represent a wide playground for
the investigation of zero-temperature transitions.

A generic model of a frustrated HAFM widely discussed in the literature
(see, e.g., [55,85,131–138]) is the spin-half J1−J2 model on the square lattice,
where the frustrating J2 bonds plus quantum fluctuations are believed to
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lead to a second-order transition from a Néel-ordered state to a quantum
paramagnetic state at about J2 ≈ 0.38J1. The properties of the latter state
are still far from being understood. One favored quantum phase for J2 ∼ 0.5J1
is a valence bond crystal. However, there are examples where frustration leads
to a first-order transition in quantum spin systems in contrast to a second-
order transition in the corresponding classical model (see, e.g., [27,74,99,139–
141]).

The competition between non-equivalent NN bonds melts the semi-
classical Néel order by formation of local singlets. By contrast to frustration,
which yields competition in quantum as well as in classical systems, the local
singlet formation is a pure quantum effect. Both mechanisms may of course be
mixed as, for instance, in CaV4O9 or in SrCu2(BO3)2 (see, e.g., [64,68,99]).

Let us first discuss a mean-field like approach to describe the continuous
quantum phase transition driven by local singlet formation. To that end
we study the HAFM on the CaVO lattice having two non-equivalent NN
bonds J and J ′, see Fig. 2.10. The uncorrelated mean-field state for Néel
LRO is the two-sublattice Néel state |φMF1〉 = | ↑〉| ↓〉| ↑〉| ↓〉| ↑〉| ↓〉 . . .
and for the dimerized singlet state it is the rotationally invariant product
state of local singlets of the two spins belonging to a J ′ bond |φMF2〉 =∏

{i,j}J′ {| ↑i〉| ↓j〉 − | ↓i〉| ↑j〉} /
√

2 , where i is a site in the sublattice A and
j a site in sublattice B. In order to describe the transition between both sta-
tes, we consider an uncorrelated product state interpolating between |φMF1〉
and |φMF2〉 of the form [27,142]

|ΨMF (t)〉 =
∏

{i,j}J′

1√
1 + t2

{| ↑i〉| ↓j〉 − t| ↓i〉| ↑j〉} . (2.15)

We have |ΨMF (t = 0)〉 = |φMF1〉 and |ΨMF (t = 1)〉 = |φMF2〉. The minimal
value of the energy is given by

EMF

N
=
〈ΨMF |H|ΨMF 〉

N
=

{
− 3J′

8 − 1
16J (2J − J ′)2 J ′ ≤ 2J

− 3J′
8 J ′ > 2J.

(2.16)

Furthermore, it is found that the sublattice magnetization mz has the follo-
wing form

mz = 〈ΨMF |Sz
i∈A|ΨMF 〉 =

{ 1
4J

√
(2J − J ′)(2J + J ′) J ′ ≤ 2J

0 J ′ > 2J.
(2.17)

Note that mz vanishes at a critical point J ′
c = 2J , and that the critical

index is the mean-field index 1/2 (see Fig. 2.23b). Using the relation between
the variational parameter t and the sublattice magnetization mz we find

the relation EMF /N = − 1
8J

′ − 1
4J

′
√

1 − 4 (mz)2 − J (mz)2 showing
the typical behavior of a second-order transition, see Fig. 2.23a. We can
expand EMF up to the fourth order in mz near the critical point and find a
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Fig. 2.23. Mean field results for the J−J ′−HAFM on the CaVO lattice. a: Energy
versus order parameter. b: Order parameter versus J ′

Landau-type expression, given by EMF /N = − 3
8J

′ + 1
2 (J ′ − 2J) (mz)2 +

1
2J

′ (mz)4 .
Although this mean-field like description gives some qualitative insight

into the physics of the quantum phase transition for the CaVO lattice more
elaborated investigations [48, 64, 66, 70] show that the quantum phase tran-
sition to a rotationally invariant gapped dimerized GS phase takes place at
J ′/J ≈ 1.7 and to the plaquette singlet GS phase at J ′/J ≈ 0.9. The critical
exponents of quantum phase transitions driven by the competition of non-
equivalent NN bonds in 2D quantum HAFMs are not the mean field expo-
nents but those of the three-dimensional classical Heisenberg model [70,143].

Another interesting example for quantum phase transitions in spin sy-
stems appears in the Shastry-Sutherland model, i.e. the J1 − J2 HAFM on
the SrCuBO lattice (T6). We will use in this section the Shastry-Sutherland
representation (frustrated square lattice, see Fig. 2.16a, lower part). The clas-
sical GS of this model has two phases: The collinear Néel phase for J2 ≤ J1
and a spiral phase for J2 > J1 (cf. Fig. 1 in [94]). The transition between the
two classical phases is of second order.

For J2 ≤ J1 the physics of the quantum model is similar to that of the clas-
sical model, i.e., we have semi-classical Néel order (see Sect. 2.4.2). However,
the quantum model exhibits new features for stronger frustration J2 > J1.
Firstly, one finds that the collinear Néel phase in the quantum model can sur-
vive into the region where classically it is already unstable [94, 99, 102, 104].
This effect is known as order from disorder [144,145] and is widely observed
in quantum spin systems (see, e.g. [27, 55,110]).
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Fig. 2.24. Spin-spin correlation and square of sublattice magnetization (order
parameter) scaled by their values for the square lattice (J2 = 0) for the Shastry-
Sutherland model (N = 32)

Secondly, one knows already from Shastry and Sutherland [93] that for
large enough J2 the quantum GS is a rotationally invariant product state of
local pair singlets |φ〉 =

∏
{i,j}J2

[| ↑i〉| ↓〉j − | ↓i〉| ↑〉j ]/
√

2 (so-called ortho-
gonal dimer state), where i and j correspond to those sites which cover the J2
bonds. This orthogonal dimer phase sets in at around Jc

2 ≈ (1.45 . . . 1.48)J1
[95–97, 99, 102, 104]. The nature of the transition to the dimer phase is still
a matter of discussion, although there are arguments that the transition is
probably of first order [94, 99]. In the region 1.2J1 � J2 � 1.45J1 the main
challenging question is whether the system has an intermediate phase. Can-
didates are quantum spiral phases or more favorable a plaquette RVB like
phase. Despite numerous investigations, a definite picture concerning the exi-
stence and nature of an intermediate phase has not yet emerged.

We illustrate such behavior discussed above by finite-lattice results (N =
32) for the spin-spin correlation along the NN J1 bond, along the diago-
nal J2 bond and for the largest separation R = 4 available in the finite
N = 32 Shastry-Sutherland lattice as well as for the square of sublattice ma-
gnetization m̄2 (cf. (2.6)) shown in Fig. 2.24. We have scaled the correlation
functions and the sublattice magnetization by their corresponding values for
the square lattice (J2 = 0) for better comparison. The small changes in the
correlation functions and the sublattice magnetization are in agreement with
the survival of the collinear Néel ordering up to about J2 ∼ 1.2J1. Beyond
J2 ∼ 1.2J1 the correlation functions change drastically up to J2 = 1.4785J1,
where for N = 32 the rotationally invariant orthogonal dimer state becomes
the GS. At this point the correlation functions and the sublattice magne-
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tization jump to their values of the orthogonal dimer state. The behavior in
the region 1.2J1 � J2 < 1.4785J1 preceding the transition to the orthogonal
dimer state seems to be in accordance with the existence of an intermediate
phase.

2.6 Magnetization Process

In this final section we discuss the effect of a uniform external magnetic
field on the models discussed so far. Once a small but finite magnetization is
created by the external field, spins can no longer align completely antiparallel
in the classical ground state even for a bipartite lattice. Since this is similar
to the effect of geometric frustration, one can regard the magnetic field as
introducing or enhancing frustration. One may therefore expect that a strong
external field can induce further interesting quantum effects. In particular,
we will discuss the quantum phenomena which are sketched in Fig. 2.25:

(a) Plateaux have a fixed magnetization m in a region of the applied magnetic
field h. Note that a plateau with magnetization m = 0 corresponds to a
spin gap at zero magnetic field h = 0.
On a plateau, the magnetization m typically assumes a (simple) rational
fraction of its saturation value.

(b) Also some examples of jumps associated with a special degeneracy in the
spectrum will be discussed in Sect. 2.6.4.

Specifically we consider the Heisenberg antiferromagnet (2.1) in a uniform
external magnetic field h

0

m

0

1

h

(a)

(a)

(b)

(a)

Fig. 2.25. Schematic magnetization curve illustrating some plateaux (a) and a
jump below saturation (b)
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H =
∑

<i,j>

JijSiSj − h
∑

i

Sz
i . (2.18)

In the following we will focus on the zero-temperature magnetization process
of the Heisenberg antiferromagnet (2.18) on the 11 Archimedean and some
related lattices. Some further aspects of two-dimensional s = 1/2 antiferro-
magnets in an external field have been summarized e.g. in [12,146].

In the present context it will sometimes be useful to allow for general
length s of the local spin. One can also introduce an XXZ anisotropy as
a prefactor ∆I multiplying the z-z interaction term in (2.1). Note that a
magnetic field h �= 0 already breaks the symmetry from SU(2) down to U(1)
such that in contrast to the case h = 0, there is no reason for the Heisenberg
point ∆I = 1 to be special. We will nevertheless concentrate mainly on
s = 1/2 and ∆I = 1.

An important observable is the magnetization

m =
1
sN

∑

i

Sz
i (2.19)

which we normalize to saturation value m = 1 (recall that N is the total
number of spins in the system). The magnetization (2.19) is a conserved
quantity for the Hamiltonian (2.18): [H,m] = 0. One can therefore replace
the operator (2.19) by its expectation value and by slight abuse of notation we
will use the same symbol for both. The conservation of m is also technically
useful for computing the magnetization curve since one can relate energies
with a field E(h) to the energies E(Sz, h = 0) for fixed total Sz at h = 0

E(h) = E(Sz, h = 0)− hSz . (2.20)

This implies that the GS energies in the sectors Sz and Sz + 1 cross at the
magnetic field

h = E(Sz + 1, h = 0)− E(Sz, h = 0) (2.21)

i.e. at this value of h the magnetization increases by 1/sN . The ground
states with a given total spin S typically carry the maximal possible Sz and
hence S = Sz holds for them. In such a situation, E(Sz, h = 0) = E(S) of
the preceding sections and (2.21) implies that the h(m) curve is obtained by
(discrete) differentiation of the E(S) curve at h = 0 with respect to S ∼ m.
In particular, if there is a regime with a quadratic dependence of E on S like
in (2.10), the magnetization curve m(h) becomes linear in this regime.

If E(S) has a downward cusp, one obtains two different fields h1 and h2
when approaching the associated value of m from below and above, respec-
tively, and one finds a plateau in m(h). In one dimension, the appearance of
plateaux is governed by the following quantization condition on the magne-
tization m [147] (see also [146] for a more detailed discussion)
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sV (1−m) ∈ Z . (2.22)

Here V is the number of spins in a translational unit cell of the ground
state (i.e. the lowest state for a given m) which can be larger than (namely an
integer multiple of) the unit cell of the Hamiltonian if translational symmetry
is spontaneously broken.

In two dimensions, there is no proof yet that the condition (2.22) is a
necessary one. Nevertheless, the condition (2.22) should apply to those ca-
ses where plateau states are ordered (e.g. valence bond crystals) and it is
therefore at least a useful guide also in two dimensions.

Figure 2.26 shows results for magnetization curves of all 11 Archimedean
lattices. With one exception, all these curves have been computed for finite
lattices with N = 36 sites. Since for s = 1/2 only the discrete values Sz = 0,
1, . . . , N/2 are allowed for a given N , one finds step-like curves on a finite
lattice. The task is then to determine which parts of these curves will become
smooth in the thermodynamic limit N →∞ or where anomalies like plateaux
or jumps remain in this limit.

Clearly, the behavior in a magnetic field is even richer than the h = 0
properties and we will therefore not aim at a complete analysis. Before we
proceed with a discussion of some selected aspects, we would like to add
some remarks on two tilings that we will not discuss further. Firstly, on the
trellis lattice (T5) the ground states in a magnetic field carry incommensurate
momenta. They correspond in the x-direction to the twist angle α2 discussed
in Sect. 2.4.2 (although for m < 1 the GS momenta in a quantum system are
in general different from the classical twist angle). Since irrational momenta
are not realized for any finite lattice, one obtains additional finite-size effects.
However, we have checked that these effects are sufficiently small for the N =
36 lattice which we have used to render the result in Fig. 2.26 qualitatively
representative.

Secondly, the ground state on the CaVO lattice (T11) has a unit cell with
8 spins (see Sect. 2.4.1). Since this does not fit on a lattice with N = 36 sites,
one observes large finite-size artifacts in this case. In fact, the CaVO lattice is
the only one among the 11 Archimedean lattices where no good magnetization
curve can be obtained for N = 36. For completeness, we nevertheless show
this result as the dotted curve in Fig. 2.26, but we also show a curve for
N = 32 (full line) which should be considered as representative.

In the following three sections we discuss the tilings T2 (square), T1
(triangular) and T8 (kagomé) in more detail.

2.6.1 Square Lattice

Let us start with a brief discussion of the magnetization process of the square
lattice which is well understood and probably representative for the non-
frustrated Archimedean tilings. Figure 2.27 shows the magnetization curve of
the s = 1/2 square-lattice Heisenberg antiferromagnet obtained by different
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Fig. 2.26. Magnetization curves of the s = 1/2 Heisenberg antiferromagnet with
J = 1 on all 11 Archimedean tilings. Results are for N = 36 sites except for the
tiling T11 (CaVO) where the full curve shows a result for N = 32 which should be
more representative than N = 36 (shown as the dashed curve). For further details
compare the text
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Fig. 2.27. Magnetization curve of the s = 1/2 Heisenberg antiferromagnet on
the square lattice. The thin solid line is for N = 40 sites, the full bold line is an
extrapolation to the thermodynamic limit. A second-order spin-wave result [151]
(bold dashed line) and QMC results (diamonds) are also shown

approaches. Firstly, the thin full line shows the result obtained by exact
diagonalization for a finite lattice with N = 40 sites [148] (see also [88, 149,
150] for earlier exact diagonalization studies). The full bold line denotes an
extrapolation of the exact diagonalization data to the thermodynamic limit
which is obtained by connecting the midpoints of the finite-size steps at the
largest available system size. One observes a smooth magnetization curve
with no peculiar features (in particular no plateaux) for |m| < 1. Note that
close to saturation the extrapolated curve includes data at large system sizes,
which are not shown explicitly in Fig. 2.27 (the curve is based exclusively on
finite lattices with at least 8 × 8 sites for m ≥ 0.84375). The high-field part
of the magnetization curve is therefore particularly well controlled by exact
diagonalization.

The magnetization curve of a classical Heisenberg antiferromagnet would
be just a straight line for all fields up to saturation. Hence, the curvature of
the magnetization curve Fig. 2.27 is due to quantum effects. These quantum
effects can also be studied by spin-wave theory; a second-order spin-wave
result [151] is shown by the bold dashed line in Fig. 2.27.

Finally, the magnetization process of the square lattice can also be studied
by quantum Monte Carlo (QMC) since this lattice is not frustrated, We have
generated some values of m(h) on a 64 × 64 lattice (typically at T = J/50
which we have lowered to T = J/200 upon approaching saturation) using
the ALPS stochastic-series-expansion QMC application [152, 153]. These re-
sults are shown by the diamonds in Fig. 2.27 (statistical errors are much
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smaller than the size of the symbols) and agree with available stochastic-
series-expansion QMC results [154].

The quantitative differences of the results of all three approaches are
small, i.e., each approach yields a good description of the s = 1/2 HAFM
on the square lattice. As the spin-wave approach [151] is based on a Néel
state, we may therefore conclude that Néel order prevails in the transverse
components for |m| < 1 (see also [150] for a discussion from the point of view
of exact diagonalization).

The same picture is probably also valid for the other bipartite non-
frustrated tilings, namely T3 (honeycomb), T10 (SHD) and T11 (CaVO).
All these lattices are believed to be Néel ordered at h = 0 (see Sect. 2.4.4).
Upon application of a magnetic field, the Néel vector first turns perpendi-
cular to the field and then the sublattice magnetizations are smoothly tilted
towards the field direction until full polarization is reached. At least the nu-
merical results for the magnetization curves shown in Fig. 2.26 for the lattices
T3 (honeycomb – see also [88] for further details and numerical data), T10
(SHD) and T11 (CaVO) are consistent with a smooth magnetization curve.

From an experimental point of view, one needs a sufficiently small
exchange constant J to render the saturation field acccessible in a labora-
tory. Successful synthesis and measurement of the magnetization process of
suitable s = 1/2 square lattice antiferromagnets have been reported in [54].

2.6.2 Triangular Lattice

The s = 1/2 XXZ model on the triangular lattice is among the first mo-
dels whose magnetization process was studied by exact diagonalization [155].
These early studies already found a plateau with m = 1/3, at least for Ising-
like anisotropies ∆I > 1. Due to the restriction to at most 21 sites, it was
first not completely clear whether the plateau persists in the isotropic re-
gime ∆I ≈ 1. The magnetization process of the Heisenberg antiferromagnet
(∆I = 1) was analyzed further using spin-wave theory [156]. This study pro-
vided evidence that the m = 1/3 plateau exists also at ∆I = 1 and estimates
for its boundaries were obtained.

Figure 2.28 shows the magnetization curves obtained by exact diagonaliza-
tion for the s = 1/2 Heisenberg antiferromagnet on finite lattices with N = 36
and 39 sites (thin lines). There are small quantitative differences of the N =
36 curve with exact diagonalization results presented previously [37, 88, 146]
whose origin is discussed in [148]. Both curves in Fig. 2.28 exhibit a clear pla-
teau at m = 1/3 in an otherwise smooth magnetization curve. The spin-wave
results for the magnetic fields at the lower h1 = 3 (s − 0.084) J = 1.248 J
and the upper boundaries h2 = 3 (s + 0.215) J = 2.145 J of the m = 1/3
plateau [156] are smaller by about 0.13J (lower boundary) and 0.01J (upper
boundary) than the exact diagonalization results presented here for N = 39
and s = 1/2.
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Fig. 2.28. Magnetization curve of the s = 1/2 Heisenberg antiferromagnet on
the triangular lattice. The thin dashed and solid lines are for N = 36 and 39 sites,
respectively. The bold line is an extrapolation to the thermodynamic limit

The full bold line in Fig. 2.28 denotes an extrapolation of the exact diago-
nalization data to the thermodynamic limit which is obtained by connecting
the midpoints of the finite-size steps at the largest available system size (ex-
cept for the boundaries of the m = 1/3 plateau where corners were used).
Close to saturation this includes again bigger system sizes than those expli-
citly shown in Fig. 2.28.

The state of the m = 1/3 plateau can be easily understood in the Ising
limit ∆I � 1 [87, 88]. Quantum fluctuations are completely suppressed in
the limit ∆I → ∞ and the m = 1/3 state is a classical state where all
spins on two of the three sublattices of the triangular lattice point up and
all spins on the third sublattice point down. This state corresponds to an
ordered collinear spin configuration. It is threefold degenerate and breaks the
translational symmetry. One can then use perturbation theory in 1/∆I to
study the m = 1/3 plateau of the XXZ model [88]. However, the current
best estimate of the point ∆I,c where the m = 1/3 plateau disappears is
obtained from a numerical computation of the overlap of the Ising states
and the m = 1/3 wave function of the full XXZ model with s = 1/2:
∆I,c = 0.76± 0.03 [148]. This means that the m = 1/3 plateau states of the
Ising antiferromagnet and the Heisenberg antiferromagnet on the triangular
lattice are qualitatively the same.

In the absence of a magnetic field, order persists in the Heisenberg anti-
ferromagnet on the triangular lattice despite the geometric frustration (see
Sect. 2.4.2). We have now seen that the magnetic field enhances the frustra-
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tion sufficiently in the Heisenberg antiferromagnet on the triangular lattice
to open a spin gap and thus a plateau at m = 1/3.

Among the other magnetization curves shown in Fig. 2.26, the one of the
bounce lattice (T7) looks most similar to the one of the triangular lattice.
Indeed, also the tiling T7 consists of triangles and one may expect that also
here an up-up-down spin structure on each triangle gives rise to an m = 1/3
plateau. However, the covering of the complete lattice with up-up-down tri-
angles is not unique for the bounce lattice, indicating at least some differences
in the magnetization process of the triangular and bounce lattices.

2.6.3 Kagomé Lattice

Among the Archimedean lattices, the kagomé (T8) and star (T9) lattices are
characterized by the combination of strong frustration and low coordination
number. As discussed in Sects. 2.4.3 and 2.4.4, we believe that they give rise to
a quantum paramagnetic ground state at h = 0. The N = 36 magnetization
curves in Fig. 2.26 indicate that these two lattices are presumably also those
with the most complicated and rich magnetization processes among all 11
Archimedean lattices. Here we summarize the current understanding of the
magnetization process of the s = 1/2 kagomé lattice and leave a detailed
investigation of the star lattice to the future.

Figure 2.29 shows complete magnetization curves for the kagomé lattice
with N = 27 and 36 sites as well as the high-field part of N = 45 and 54
curves [148,157,158]. Firstly, there should be a plateau at m = 0 associated to
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Fig. 2.29. Magnetization curves of the s = 1/2 Heisenberg antiferromagnet on the
kagomé lattice with N = 27, 36 (complete), 45 and 54 (partial). The inset shows a
magnified version of the region around m = 7/9
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the small spin gap above the quantum paramagnetic ground state. However,
this is difficult to recognize in Fig. 2.29.

A plateau at m = 1/3 may be better recognized in Fig. 2.29. In fact, the
presence of this plateau at m = 1/3 in the s = 1/2 Heisenberg antiferroma-
gnet on the kagomé lattice has been established previously by considering
also system sizes different from those shown in Fig. 2.29 [157,159]. The state
of this plateau is, however, quite non-trivial. For the classical Heisenberg an-
tiferromagnet at m = 1/3, thermal fluctuations select collinear states, but
due to the huge degeneracy of these states, there appears to be no real order
on the classical level at m = 1/3 [160] (see also [161]). For s = 1/2, it is
useful to consider the XXZ model. In the Ising limit ∆I →∞ one can then
first establish [162] a relation to a quantum dimer model on the honeycomb
lattice which was argued [163,164] to give rise to a valence bond crystal gro-
und state with a

√
3×

√
3 order. Fig. 2.30 shows a qualitative picture of this

state. In the present context the circles indicate resonances between the two
different Néel states on the surrounding hexagon. The next step is to com-
pute the overlap of the m = 1/3 wave function of the XXZ model with that
of the quantum dimer model as a function of ∆I and one finds no evidence
for a phase transition for ∆I ≥ 1 [162]. This implies that also the m = 1/3
state of the s = 1/2 Heisenberg antiferromagnet on the kagomé lattice is an
ordered state with features similar to the valence bond crystal. There are
many low-lying non-magnetic excitations above the lowest m = 1/3 state
which can be considered as a remnant of the classical degeneracy. However,
the valence-bond-crystal-type order implies just three degenerate m = 1/3
ground states related by translational symmetry (see Fig. 2.30 for illustra-
tion) and a gap to all excitations above this three-fold degenerate ground
state. Note that for the s = 1/2 Heisenberg antiferromagnet on the kagomé
lattice this non-magnetic gap in the m = 1/3 sector turns out to be quite
small (estimates are of the order of J/25 [162]).

Fig. 2.30. Part of the kagomé lattice with a
√

3×√
3 superstructure indicated by

the circles in certain hexagons. Arrows indicate spins which are aligned with the
magnetic field
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There may be a further plateau at m = 5/9 in Fig. 2.29 although it is
difficult to draw unambiguous conclusions from the available numerical data
in this region of magnetization values.

Finally, one can see a pronounced jump of height δm = 2/9 just below
saturation and a plateau at m = 7/9 in the magnetization curve of the
s = 1/2 kagomé lattice. Both features will be discussed in more detail in the
next section.

2.6.4 Independent Magnons
and Macroscopic Magnetization Jumps

For the s = 1/2 Heisenberg model on a given two-dimensional lattice it is a
very rare event that one can write down the ground state exactly. One such
exceptional case is the dimerized ground state arising in the two-dimensional
Shastry-Sutherland model [93] (see Sect. 2.5). It is therefore remarkable that
in the high-field region of some popular frustrated lattices such as the kagomé
lattice one can construct a macroscopic number of exact ground states. We
will discuss some aspects of the construction in more detail in this section,
focusing in particular on the kagomé lattice. Note that similar constructions
can be given for other lattices [158, 165] and finite clusters [166] (for other
points of view we also refer to [158, 165]). We also wish to remark that the
construction of exact eigenstates to be described below works for models
where no non-trivial conservation laws are known. However, it is restricted
to the transition to saturation, since, as will become clear in the following,
it relies on the knowledge of a reference state (namely the ferromagnetically
polarized state |↑ . . . ↑〉 which is a trivial eigenstate of the Hamiltonian) and
an analytic determination of the one-magnon excitations above it.

Now let us be more specific and, as the first step, consider very high
magnetic fields such that the ground state is the ferromagnetically polarized
state. In highly frustrated spin models, the lowest branch ω0(k) of the one-
magnon excitations above the ferromagnetically polarized state often has
some flat directions (i.e. does not depend on some of the components ki)
or is completely flat (i.e. independent of k). In the latter case, one finds a
special type of jump just below the saturation field as well as indications for
a plateau below the jump [158,165].

The explicit computation of the one-magnon spectrum above the ferro-
magnetically polarized state depends on the model. For example, the kagomé
lattice has a unit cell containing three sites and the spectrum is obtained by
diagonalization of a 3× 3 matrix. For the spin-s XXZ model one then finds
the three magnon branches ωi(k) (i = 0, 1, 2) which are shown in Fig. 2.31.
Remarkably, the lowest branch ω0(k) = h−(2+4∆I) J s is completely flat, i.e.
independent of k. This property is a fingerprint of the strong frustration cau-
sed by the triangles in the kagomé lattice. In fact, the lowest magnon branch
relative to the ferromagnetically polarized state is also completely flat for
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Fig. 2.31. The three branches ωi(k) of one-magnon excitations above the ferro-
magnetic background for the kagomé lattice along the path in the Brillouin zone
shown in the inset. Note that ω0(k) is completely independent of k

some other popular highly frustrated lattices including the pyrochlore lattice
and its two-dimensional projection, namely the checkerboard lattice [158].

The one-magnon excitations can be localized in the real-space directions
corresponding to a flat direction in k-space by using an inverse Fourier trans-
formation. If the dispersion is completely flat, one can construct a magnon
excitation that is localized in a finite volume. For the kagomé lattice, these
local magnon excitations are located on the hexagons marked by circles in
Fig. 2.30. Apart from normalization, this state is given by

|1〉 ∼
∑

x

(−1)xS−
x |↑ . . . ↑〉 (2.23)

where the sum runs over the 6 corners of the hexagon. Localization can be
verified since each spin next to the hexagon is coupled to two spins in the
hexagon such that contributions of flipped spins propagating onto the exterior
site add with different signs and thus cancel. Therefore, a localized magnon
is an exact eigenstate of the XXZ Hamiltonian on the kagomé lattice.

Now one can create further localized magnon excitations. As long as the
local magnons are sufficiently well separated in space, they do not interact
and consequently the many-magnon state is still an exact eigenstate. The
non-trivial step is to verify that these non-interacting localized magnon exci-
tations are not only eigenstates but in fact ground states in their respective
magnetization subspaces. This result is probably true for general s, general
coupling geometries with Ji,j ≥ 0 and XXZ anisotropy ∆I ≥ 0. In [158]
the ground state property was verified numerically for some cases and it
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has been shown rigorously for certain subsets of the parameters, namely for
s = 1/2, ∆I ≥ 0 and all coupling constants Ji,j equal [166] or for general s
and Ji,j ≥ 0, but isotropic interaction ∆I = 1 [167].

If the localization region is finite, a macroscopic fraction of the spins in
the system can be flipped using local magnon excitations. Since the energies
of the individual excitations add without interaction terms, one obtains a
finite interval of the magnetization m where the ground state energy E(m)
becomes a linear function. Due to the relation (2.21), this linear behavior
leads to a finite jump in the magnetization curve m(h) at the saturation field
hsat.

Inspection of Fig. 2.30 shows that at most N/9 local magnons fit on a
finite kagomé lattice. Therefore, a jump of height δm = 1/(9 s) is predicted
for the kagomé lattice. For the s = 1/2 Heisenberg antiferromagnet on the
kagomé lattice one indeed observes numerically a jump of height δm = 2/9
which is independent of the system size if boundary conditions are chosen
appropriately (see Fig. 2.29). Note that the height of the jump is in general
proportional to 1/s and vanishes in the classical limit s→∞. Therefore, the
macroscopic jump caused by independent local magnons is a true macroscopic
quantum effect.

The maximal number of local excitations is obtained for their closest
possible packing. The circles in Fig. 2.30 indicate this state for the kagomé
lattice. This clearly is an ordered (crystalline) state. According to general
arguments [98, 168], one expects a gap above such a crystalline state and
consequently a plateau in the magnetization curve at the foot of the jump.
This conclusion is supported by the numerical magnetization curve of the
s = 1/2 Heisenberg antiferromagnet on the kagomé lattice, Fig. 2.29, which
exhibits a clear plateau at m = 7/9 with a width around 0.07J [169].

The excitation energy of a local magnon is exactly zero at the saturation
field hsat. Hence, all independent magnon states are exactly degenerate at
h = hsat. The number of these states grows exponentially with N . This
can be seen by considering the subset of states where magnons sit only on
the positions of the crystalline state. Since the number of such positions is
proportional to N and each position can be empty or occupied by a magnon,
one finds an exponentially growing lower bound on the number of independent
magnon states (this lower bound is 2N/9 for the kagomé lattice). In other
words, the local magnon excitations give rise to a finite zero-temperature
entropy at h = hsat for a quantum spin system !

The star lattice (T9) is the other Archimedean tiling which supports local
magnon excitations. In this case, the magnons are localized around dodeca-
gons as shown by the circles in the inset of Fig. 2.32. The adjacent triangles
again ensure localization via destructive interference of hopping processes
out of a dodecagon. One can read off from the inset of Fig. 2.32 that a finite
star lattice can in general accomodate at most N/18 local magnons. This
implies a jump of height δm = 1/(18 s) below saturation with a plateau at
m = 1 − 1/(18 s) corresponding to the crystalline pattern of local magnon
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Fig. 2.32. High-field part of the magnetization curves of the s = 1/2 Heisenberg
antiferromagnet on the star lattice (T9) with N = 54 (dashed line) and N = 72
sites (solid line). The inset indicates the closest packing of local magnon excitations

excitations sketched in the inset of Fig. 2.32. The main panel of Fig. 2.32
shows that a jump of the expected height δm = 1/9 is indeed present in the
magnetization curves of the s = 1/2 model on lattices with N = 54 and 72.
Note that the N = 36 lattice whose magnetization curve is shown in Fig. 2.26
is not generic, but an exception from the point of view of local magnons. Due
to its small linear extent, it has more and shorter cycles wrapping around the
boundary than present in the infinite system, namely of length eight while
the dodecadons yield cycles with length twelve. This N = 36 lattice then
supports not only two but three local magnons and therefore the jump is
higher than in the generic situation. Note further that a plateau is expected
below this jump, i.e. at m = 8/9 for s = 1/2. However, the N = 54 and 72
curves in Fig. 2.32 do not allow an unambiguous confirmation of the presence
of such a plateau.

The checkerboard and a square-kagomé lattice are further two-dimensional
lattices supporting local magnon excitations [158,169]. On the checkerboard
lattice, a magnon is localized around a square. This leads to a jump of size
δm = 1/(8 s), as one can verify numerically for s = 1/2 [165].

We would like to mention in passing that there are instabilities towards
lattice deformations. However, it can be argued that the most favorable insta-
bility is one which preserves the local magnon excitations as exact eigenstates
and the associated degeneracy [169].

A related but different situation arises in two dimensions if the minima of
the one-magnon excitations form a one-dimensional manifold. One example
is the two-dimensional Shastry-Sutherland lattice [170] whose magnetization
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process will be discussed in the next section, another one is the frustrated
square lattice mentioned in Sect. 2.5 at J2 = J1/2 [171, 172]. In this case,
magnon excitations can be constructed [146, 158] that are localized in some
directions, but not all. The frustrated square lattice can accommodate L/2 lo-
cal magnon excitations [146,158] if the linear extent of the lattice is L, leading
to a finite-size jump δm = L/(2N s). A finite-size jump of height δm = L/N
is indeed observed in exact diagonalization studies of the s = 1/2 frustra-
ted square lattice at J2 = J1/2 [146, 172]. However, due to the incomplete
localization, the height of the jump vanishes in the thermodynamic limit,
i.e. the transition to saturation remains continuous in such a case. Although
the magnetization curve should be exceptionally steep just below saturation,
the precise asymptotic form has been discussed controversially [150,158,172].
A recent diagrammatic analysis of the condensation problem into the one-
magnon dispersion yields a square-root dependence with a logarithmic cor-
rection for the frustrated square lattice at J2 = J1/2 [173].

2.6.5 Shastry-Sutherland Model Versus SrCu2(BO3)2

For the purpose of high-field magnetization experiments one does not only
need materials which realize a given lattice structure, but in addition J must
be small in order to be able to achieve full or at least a macroscopic pola-
rization of the sample in (pulsed) magnetization experiments. SrCu2(BO3)2
is an s = 1/2 material whose lattice structure corresponds to the tiling T6
and where the exchange constants are sufficiently small to close the spin gap
by an external magnetic field and study the material at finite magnetizations
in a laboratory. The magnetization process of SrCu2(BO3)2 has attracted
considerable attention because plateaux are observed in the magnetization
curve11 at m = 1/8, 1/4 and 1/3 [5, 174–176] (see Fig. 2.33).

By contrast, the tiling T6 at J = J1 = J2 has a smooth magnetization
curve (see Fig. 2.26), hence we need to consider the Shastry-Sutherland model
with J1 �= J2. The theoretical analysis of the magnetization process of the
two-dimensional Shastry-Sutherland model [93] has been summarized in [105]
– here we discuss only some selected aspects.

For J2 → 0, the Shastry-Sutherland model reduces to the square lattice
antiferromagnet which is Néel ordered in the transverse components for all
magnetic fields (see Sect. 2.6.1). As discussed in Sect. 2.5, this Néel phase
extends beyond J2 = J1 for m = 0. For m → 1, Néel order in the trans-
verse components is stable for J2 ≤ J1 [170]. We have performed a finite-size
analysis of the widths of the m = 1/8, 1/4, 1/3 and 1/2 steps and found
no indications for plateaux in the thermodynamic limit for J2 = J1. These
considerations indicate the absence of quantum phase transitions between
11 Magnetization experiments are controlled by a material-dependent and anisotro-

pic g-factor. The s = 1/2 spins in SrCu2(BO3)2 are localized on Cu2+-ions, hence
g ≈ 2 – see e.g. [174] for more details.
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Fig. 2.33. Magnetization curves of a SrCu2(BO3)2 single crystal scaled by g = 2.28
for h ‖ c and g = 2.05 for h ⊥ c [174]. Also shown are magnetization curves of the
s = 1/2 Heisenberg antiferromagnet on N = 32 and 36 Shastry-Sutherland lattices
for J2 = 57T, J1 = 0.6 J2

J2 = 0 and J2 = J1 for any value of the field h such that Néel order persists
for the tiling T6 with J2 = J1 at all magnetic fields.

This is one indication that SrCu2(BO3)2 should be described by J2 > J1
since several plateaux are observed in its magnetization curve Fig. 2.33, na-
mely at m = 0, 1/8, 1/4 and 1/3 [5, 174–176]. In this regime, one can per-
form perturbation expansions around the limit of decoupled dimers J1 = 0
and indeed perturbation theory plays a central role in the theoretical appro-
aches [98, 170, 177–179]. Plateaux at m = 0, 1/2, 1/3 and 1/4 then arise in
zeroth, first, second and fourth order perturbation theory in J1, as has been
clearly pointed out in [179].

For a direct comparison with the Shastry-Sutherland model, we adopt
the estimates J1 ≈ 0.6 J2 and J2 ≈ 70− 75K obtained by analyzing inelastic
neutron scattering data [180–182] or the specific heat in a magnetic field
[176]. The magnetization curves for the Shastry-Sutherland model shown
in Fig. 2.33 were computed by choosing first J1 = 0.6 J2 and then setting
the overall scale to J2 = 57T (≈ 77K with g = 2). The m = 1/8 and
1/4 plateaux (present only for N = 32 in Fig. 2.33), the m = 1/3 plateau
(present only for N = 36 in Fig. 2.33) and the m = 0 plateau agree roughly
with the experimental results [174]. We have also performed computations for
the value J1 = 0.68 J2 proposed in [174] and have found less good agreement.

Only the region with m ≤ 1/3 has so far been accessed with magne-
tization experiments on SrCu2(BO3)2. Hence, the magnetization curves for
the N = 32 and N = 36 Shastry-Sutherland lattices are also restricted to
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Fig. 2.34. Magnetization curve of the s = 1/2 Heisenberg antiferromagnet on the
Shastry-Sutherland lattice for J2 = 1, J1 = 0.6. The dashed and solid lines are for
N = 32 and N = 36 sites, respectively. The diamonds denote the exact value of the
saturation field at m = 1 [170] and a series expansion result for the gap to S = 1
excitations at m = 0 [180], respectively

m ≤ 1/3 in Fig. 2.33. Fig. 2.34 shows the corresponding complete magnetiza-
tion curves for J2 = 0.6 J1. Note that we have chosen an N = 32 lattice which
is compatible with the structure of the m = 1/8 plateau in SrCu2(BO3)2 as
determined by NMR [175]. For both finite lattices, the saturation field agrees
well with the analytical result [170] shown by one of the diamonds in Fig. 2.34.
Also the boundary of the m = 0 plateau is in good agreement with the spin
gap (i.e. the gap to S = 1 excitations) computed by expansion around the
dimer limit J1 = 0 [180] (compare the second diamond in Fig. 2.34).

As on other lattices, it is more difficult to draw unambiguous conclusions
from finite-size data for intermediate values of m. One complication which the
Shastry-Sutherland model shares with the trellis lattice are incommensurate
ground states arising from the spiral phase for J1 < J2 in the classical model
(see Sect. 2.5). A more general aspect is that given magnetizations are realized
only for a limited number of sizes N . For example, lattices with N = 32 and
36 share only m = 1/2 in addition to m = 0 and 1. Even for m = 1/2
finite-size effects are still important in Fig. 2.34 although the presence of a
plateau at m = 1/2 is well established in the Shastry-Sutherland model (see
above and [105]). m = 1/8 is realized only for N = 16 apart from N = 32.
From these two lattice sizes one may estimate a plateau width � J2/10 for
the Shastry-Sutherland model at J1 = 0.6 J2, but the evidence in favor of a
plateau at m = 1/8 is not very strong yet although its structure has already
been analyzed in detail [175,183].
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2.6.6 Summary of Plateaux and Related Topics

Let us summarize the findings of this section. Firstly, in Sect. 2.6.1 we have
discussed the square lattice which we believe to be representative for the non-
frustrated bipartite tilings T2 (square), T6 (honeycomb), T10 (SHD) and
T11 (CaVO). In these cases, Néel order probably persists in the transverse
components for all magnetic fields up to saturation, leading to a smooth
magnetization curve. The frustrated tilings T4 (maple leaf), T5 (trellis) and
T6 (SrCuBO) may behave similarly. At least their N = 36 magnetization
curves shown in Fig. 2.26 appear smooth and provide no evidence for any
plateaux or jumps.

Also the triangular (T1) and bounce lattices (T7) are magnetically orde-
red at h = 0. However, in these two cases a plateau appears at m = 1/3 in
the magnetization curves (see Sect. 2.6.2). In both cases, the appearance of
a plateau at m = 1/3 may be attributed to the fact that these lattices are
built from triangles. Nevertheless, the structure of the m = 1/3 state on the
bounce lattice may be different from the one of the triangular lattice which
corresponds to a long-range ordered collinear up-up-down spin configuration.

The tilings T8 (kagomé) and T9 (star) have the most interesting ma-
gnetization curves. According to Sect. 2.4.3, at h = 0 the kagomé lattice is
expected to have a small spin gap whereas the star lattice has a large one.
This gives rise to a narrow and pronounced plateau at m = 0, respectively.
Comparison of results for the s = 1/2 Heisenberg antiferromagnet on the
kagomé lattice with different sizes N (see Sect. 2.6.3) shows that the ma-
gnetization curve has a plateau at m = 1/3. Evidence has been provided
recently [162] that the state of this m = 1/3 plateau on the kagomé lattice
has a structure of the valence-bond-crystal type. The N = 36 magnetization
curve of the star lattice shown in Fig. 2.26 indicates an m = 1/3 plateau,
too. Since the lattice T9 also consists of triangles, it is plausible that this
m = 1/3 plateau persists in the limit N → ∞. Further plateaux are sus-
pected on both lattices, including one at m = 5/9 on the kagomé lattice
(see Sect. 2.6.3) and a similar one at m = 7/9 on the star lattice (compare
Fig. 2.32) even if the currently available numerical data do not allow definite
conclusions.

Close to saturation, exact eigenstates can be constructed for the strongly
frustrated tilings T8 (kagomé) and T9 (star) – see Sect. 2.6.4. For general
s they give rise to a jump below saturation of height δm = 1/(9 s) (T8)
and δm = 1/(18 s) (T9). Furthermore, a plateau is expected directly below
this jump and such a plateau is indeed observed in the s = 1/2 Heisenberg
antiferromagnet at m = 7/9 for the kagomé lattice (T8) and possibly at
m = 8/9 for the star lattice (T9).

Although there are still open issues concerning the magnetization process
on the 11 Archimedean lattices, it is already clear that even richer behavior
is found if one allows different exchange constants on non-equivalent bonds
or adds further couplings. Examples include the following:
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• The two-dimensional Shastry-Sutherland model has been discussed in
Sect. 2.6.5. Here plateaux with m = 0, 1/4, 1/3 and 1/2 have been found
and a further one is expected at m = 1/8. In contrast, its ancestor, the
tiling T6 has a smooth magnetization curve with no particular features
(see Fig. 2.26).

• A similar situation arises in the CaVO lattice (T11) if one allows for two
different exchange constants J and J ′ as shown in Fig. 2.10. It is clear
at least in the limit J ′ → 0 that plateaux can then arise for m = 0
and 1/2 [77]. Further plateaux with m = 1/4, 3/4 and 1/8 arise in some
parameter regions if one adds a second-neighbor interaction J2 [77, 98].

• Not only the zero-field properties of the frustrated square lattice have
attracted considerable attention (see Sect. 2.5), but also its magnetization
process has been studied intensively [146, 149, 150, 171–173, 184–187]. In
this model, a collinear up-up-up-down state arises at half the saturation
field [184, 185]. For s = 1/2, this state is found to be stabilized in the
region 0.5 � J2/J1 � 0.66 where it gives rise to a plateau with m = 1/2
[146,172,184,185]. A further plateau at m = 1/3 is predicted by a Chern-
Simons theory [187] and might also be observable in exact diagonalization
studies although the latter do not allow definite conclusions about the
presence or absence of an m = 1/3 plateau yet [146].

• Another variant of the square lattice is the checkerboard lattice, a planar
projection of the pyrochlore lattice. The s = 1/2 checkerboard lattice has
a pronounced spin gap at h = 0 [128, 129, 188], i.e. a plateau at m = 0.
In the limit of decoupled four-spin units [129] another plateau arises at
m = 1/2. Numerical data for N = 32, 40 [165] and 36 sites support the
presence of an m = 1/2 plateau also in the checkerboard model where
all coupling constants are equal. The construction of Sect. 2.6.4 predicts
another plateau at m = 3/4 in the s = 1/2 checkerboard model although
here the numerical evidence [165] is less clear.

• One can also add multi-spin interactions. On the triangular lattice, inclu-
sion of four-spin cyclic exchange terms in the s = 1/2 model gives rise to
an additional plateau at m = 1/2 [12,130,189,190]. This m = 1/2 plateau
is already present in the classical model where one also finds an m = 1/3
plateau for a suitable choice of parameters [191]. The latter differs from
the m = 1/3 plateau of Sect. 2.6.2 which arises only in the quantum
Heisenberg antiferromagnet on the triangular lattice and is absent in the
classical limit.

All the aforementioned plateaux for m �= 0 give rise to ordered ground states
(at least in those cases where the state of the plateau is sufficiently well
understood). The unit cell of the ground state then has a volume V such
that the magnetization m satisfies the quantization condition (2.22). Hence,
also in two dimensions this quantization condition seems to hold generically.

The transitions to saturation in 9 of the 11 Archimedean lattices appear
to be continuous quantum phase transition (see Fig. 2.26). Generically, the di-
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spersion of the one-magnon excitations above the ferromagnetically polarized
state should be quadratic close to their minima. An analysis of the associated
condensation problem then predicts the following universal asymptotic beha-
vior of the magnetization curve close to the saturation field hsat [192–194]

1−m ∼
(
hsat − h

J

)
ln
(

b J

hsat − h

)
(2.24)

where b is a non-universal constant. The logarithmic correction in (2.24) is
characteristic for two dimensions and arises because of a logarithmic sin-
gularity in the density of states [192]. The functional form (2.24) has been
verified by a first-order spin-wave approximation for the square lattice [151]
and numerically for the s = 1/2 Heisenberg antiferromagnet on the square,
honeycomb and triangular lattices [88, 146]. We note that a behavior of the
form (2.24) is expected to be valid at generic continuous transitions at pla-
teau boundaries in two dimensions [194] (at least in those cases where the
fundamental excitations are magnons).

Deviations from (2.24) are expected if the one-magnon dispersion is not
quadratic close to the minimum which in general requires fine-tuning of para-
meters. Nevertheless, completely flat bands arise in two Archimedean lattices,
namley the kagomé and star lattices (T8 and T9). In these cases, we find a
macroscopic jump in the magnetization curve just below saturation as we
have discussed in Sect. 2.6.4
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62. A. Mattsson, P. Fröjdh, T. Einarsson: Phys. Rev. B 49, 3997 (1994)
63. N. Katoh, M. Imada: J. Phys. Soc. Jpn. 64, 4105 (1995)
64. K. Ueda, H. Kontani, M. Sigrist, P.A. Lee: Phys. Rev. Lett. 76, 1932 (1996)



150 J. Richter, J. Schulenburg, and A. Honecker

65. O.A. Starykh, M.E. Zhitomirsky, D.I. Khomskii, R.R.P. Singh, K. Ueda: Phys.
Rev. Lett. 77, 2558 (1996)

66. M.P. Gelfand, Zheng Weihong, R.R.P. Singh, J. Oitmaa, C.J. Hamer: Phys.
Rev. Lett. 77, 2794 (1996)

67. M. Albrecht, F. Mila: Phys. Rev. B 53, R2945 (1996)
68. M. Albrecht, F. Mila, D. Poilblanc: Phys. Rev. B 54, 15856 (1996)
69. Zheng Weihong, M.P. Gelfand, R.R.P. Singh, J. Oitmaa, C.J. Hamer: Phys.

Rev. B 55, 11377 (1997)
70. M. Troyer, M. Imada, K. Ueda: J. Phys. Soc. Jpn. 66, 2957 (1997)
71. I. Bose, A. Ghosh: Phys. Rev. B 56, 3149 (1997)
72. L.O. Manuel, M.I. Micheletti, A.E. Trumper, H.A. Ceccatto: Phys. Rev. B

58, 8490 (1998)
73. Zheng Weihong, J. Oitmaa, C.J. Hamer: Phys. Rev. B 58, 14147 (1998)
74. J. Richter, N.B. Ivanov, J. Schulenburg: J. Phys.: Condens. Matter 10, 3635

(1998)
75. M.A. Korotin, I.S. Elfimov, V.I. Anisimov, M. Troyer, D.I. Khomskii: Phys.

Rev. Lett. 83, 1387 (1999)
76. C.S. Hellberg, W.E. Pickett, L.L. Boyer, H.T. Stokes, M.J. Mehl: J. Phys.

Soc. Jpn. 68, 3489 (1999)
77. Y. Fukumoto, A. Oguchi: J. Phys. Soc. Jpn. 68, 3655 (1999)
78. P. Tomczak, J. Richter: Phys. Rev. B 59, 107 (1999)
79. D.A. Huse, V. Elser: Phys. Rev. Lett. 60, 2531 (1988)
80. Th. Jolicoeur, J.C. Le Guillou: Phys. Rev. B 40, 2727R (1989)
81. S.J. Miyake: J. Phys. Soc. Jpn. 61, 983 (1992)
82. R. Deutscher, H.U. Everts: Z. Phys. B 93, 77 (1993)
83. A.E. Trumper: Phys. Rev. B 60, 2987 (1999)
84. L. Capriotti, A.E. Trumper, S. Sorella: Phys. Rev. Lett. 82, 3899 (1999)
85. L. Capriotti: Int. J. of Mod. Phys. B 15, 1799 (2001)
86. D.J.J. Farnell, R.F. Bishop, K.A. Gernoth: Phys. Rev. B 63, 220402(R) (2001)
87. S. Miyashita: J. Phys. Soc. Jpn. 55, 3605 (1986)
88. A. Honecker: J. Phys.: Condens. Matter 11, 4697 (1999)
89. D.D. Betts: Proc. N.S. Inst. Sci. 40, 95 (1995)
90. D. Schmalfuß, P. Tomczak, J. Schulenburg, J. Richter: Phys. Rev. B 65,

224405 (2002)
91. B. Normand, K. Penc, M. Albrecht, F. Mila: Phys. Rev. B 56, R5736 (1997)
92. S. Miyahara, M. Troyer, D.C. Johnston, K. Ueda: J. Phys. Soc. Jpn. 67, 3918

(1998)
93. B.S. Shastry, B. Sutherland: Physica B 108, 1069 (1981)
94. M. Albrecht, F. Mila: Europhys. Lett. 34, 145 (1996)
95. S. Miyahara, K. Ueda: Phys. Rev. Lett. 82, 3701 (1999)
96. Zheng Weihong, C.J. Hamer, J. Oitmaa: Phys. Rev. B 60, 6608 (1999)
97. E. Müller-Hartmann, R.R.P. Singh, C. Knetter, G.S. Uhrig: Phys. Rev. Lett.

84, 1808 (2000)
98. T. Momoi, K. Totsuka: Phys. Rev. B 61, 3231 (2000)
99. A. Koga, N. Kawakami: Phys. Rev. Lett. 84, 4461 (2000)

100. G. Misguich, Th. Jolicoeur, S.M. Girvin: Phys. Rev. Lett. 87, 097203 (2001)
101. C.H. Chung, J.B. Marston, S. Sachdev: Phys. Rev. B 64, 134407 (2001)
102. Weihong Zheng, J. Oitmaa, C.J. Hamer: Phys. Rev. B 65, 014408 (2001)
103. D. Carpentier, L. Balents: Phys. Rev. B 65, 024427 (2002)



2 Quantum Magnetism in Two Dimensions 151
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Abstract. Magnetic molecules are fascinating new substances with a wide variety
of applications in physics, magneto-chemistry, biology, biomedicine and material
sciences as well as in quantum computing. Each of the identical molecular units
can contain as few as two and up to several dozens of paramagnetic ions whose
interaction is rather well described by the Heisenberg model with isotropic nearest
neighbor interaction sometimes augmented by anisotropy terms. Studying such fi-
nite spin systems focuses on qualitatively new physics caused by the finite size of
the system. Among the findings discussed in this chapter are extensions of the theo-
rems of Lieb, Schultz, and Mattis, the introduction of rotational bands as well as
the discovery of giant magnetization jumps.

3.1 Introduction

The synthesis of molecular magnets has undergone rapid progress in recent
years [1–6]. Each of the identical molecular units can contain as few as two and
up to several dozens of paramagnetic ions (“spins”). One of the largest para-
magnetic molecules synthesized to date, the polyoxometalate {Mo72Fe30} [7]
contains 30 iron ions of spin s = 5/2. Although these materials appear as
macroscopic samples, i. e. crystals or powders, the intermolecular magnetic
interactions are utterly negligible as compared to the intramolecular inter-
actions. Therefore, measurements of their magnetic properties reflect mainly
ensemble properties of single molecules.

Their magnetic features promise a variety of applications in physics,
magneto-chemistry, biology, biomedicine and material sciences [1,3,4] as well
as in quantum computing [8–10]. The most promising progress so far is being
made in the field of spin crossover substances using effects like “Light Induced
Excited Spin State Trapping (LIESST)” [11].

It appears that in the majority of these molecules the localized single-
particle magnetic moments couple antiferromagnetically and the spectrum is
rather well described by the Heisenberg model with isotropic nearest neigh-
bor interaction sometimes augmented by anisotropy terms [12–16]. Thus, the
interest in the Heisenberg model, which is known already for a long time [17],
but used mostly for infinite one-, two-, and three-dimensional systems, was
renewed by the successful synthesis of magnetic molecules. Studying such

J. Schnack, Molecular Magnetism, Lect. Notes Phys. 645, 155–194 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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spin arrays focuses on qualitatively new physics caused by the finite size of
the system.

Several problems can be solved with classical spin dynamics, which turns
out to provide accurate quantitative results for static properties, such as
magnetic susceptibility, down to thermal energies of the order of the exchange
coupling. However, classical spin dynamics will not be the subject of this
chapter, it is covered in many publications on Monte-Carlo and thermostated
spin dynamics. One overview article which discusses classical spin models in
the context of spin glasses is given by [18].

Theoretical inorganic chemistry itself provides several methods to under-
stand and describe molecular magnetism, see for instance [19]. In this chapter
we would like to focus on those subjects which are of general interest in the
context of this book.

3.2 Substances

From the viewpoint of theoretical magnetism it is not so important which che-
mical structures magnetic molecules actually have. Nevertheless, it is very
interesting to note that they appear in almost all branches of chemistry.
There are inorganic magnetic molecules like polyoxometalates, metal-organic
molecules, and purely organic magnetic molecules in which radicals carry the
magnetic moments. It is also fascinating that such molecules can be syn-
thesized in a huge variety of structures extending from rather unsymmetric
structures to highly symmetric rings.

One of the first magnetic molecules to be synthesized was Mn-12-acetate
[20] (Mn12) – [Mn12O12(CH3COO)16(H2O)4] – which by now serves as the
“drosophila” of molecular magnetism, see e. g. [1, 4, 21–23]. As shown in
Fig. 3.1 the molecules contains four Mn(IV) ions (s = 3/2) and eight Mn(III)
ions (s = 2) which are magnetically coupled to give an S = 10 ground
state. The molecules possesses a magnetic anisotropy, which determines the
observed relaxation of the magnetization and quantum tunneling at low tem-
peratures [21,24].

Although the investigation of magnetic molecules in general – and of Mn-
12-acetate in particular – has made great advances over the past two decades,
it is still a challenge to deduce the underlying microscopic Hamiltonian, even
if the Hamiltonian is of Heisenberg type. Mn-12-acetate is known for about 20
years now and investigated like no other magnetic molecule, but only recently
its model parameters could be estimated with satisfying accuracy [25,26].

Another very well investigated class of molecules is given by spin rings
among which iron rings (“ferric wheels”) are most popular [27–34]. Iron-6
rings for instance can host alkali ions such as lithium or sodium which allows
to modify the parameters of the spin Hamiltonian within some range [16,35].
Another realization of rings is possible using chromium ions as paramagnetic
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Fig. 3.1. Structure of Mn-12-acetate: On the top the Mn ions are depicted by large
spheres, on the bottom the dominant couplings are given. With friendly permission
by G. Chaboussant

Fig. 3.2. Structure of a chromium-4 and a chromium-8 ring. The Cr ions are
depicted by large spheres

centers. Figure 3.2 shows the structure of two rings, one with four chromium
ions the other one with eight chromium ions.

A new route to molecular magnetism is based on so-called Keplerate struc-
tures which allow the synthesis of truely giant and highly symmetric spin ar-
rays. The molecule {Mo72Fe30} [7,36] containing 30 iron ions of spin s = 5/2
may be regarded as the archetype of such structures. Figure 3.3 shows on the
l.h.s. the inner skeleton of this molecule – Fe and O-Mo-O bridges – as well
as the classical ground state [37] depicted by arrows on the r.h.s. [36].
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Fig. 3.3. Structure of {Mo72Fe30}, a giant Keplerate molecule where 30 iron ions
are placed at the vertices of an icosidodecahedron. L.h.s.: sketch of the chemical
structure, r.h.s. magnetic structure showing the iron ions (spheres), the nearest
neigbor interactions (edges) as well as the spin directions in the classical ground
state. The dashed triangle on the l.h.s. corresponds to the respective triangle on
the r.h.s.. With friendly permission by Paul Kögerler [36]

Fig. 3.4. Square lattice of {Mo72Fe30}-molecules: Each molecule is connected with
its four nearest neighbors by an antiferromagnetic coupling. With friendly permis-
sion by Paul Kögerler [38,39]

One of the obvious advantages of magnetic molecules is that the magnetic
centers of different molecules are well separated by the ligands of the mole-
cules. Therefore, the intermolecular interactions are utterly negligible and
magnetic molecules can be considered as being independent. Nevertheless, it
is desirable to build up nanostructured materials consisting of magnetic mole-
cules in a controlled way. Figure 3.4 gives an example of a planar structure
consisting of layers of {Mo72Fe30} [38,39] which has been synthesized recently
together with a linear structure consisting of chains of {Mo72Fe30} [40]. These
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systems show new combinations of physical properties that stem from both
molecular and bulk effects.

Many more structures than those sketched above can be synthesized no-
wadays and with the increasing success of coordination chemistry more are
yet to come. The final hope of course is that magnetic structures can be desi-
gned according to the desired magnetic properties. But this goal is not close
at all, it requires further understanding of the interplay of magneto-chemistry
and magnetic phenomena. One of the tools used to clarify such questions is
density functional theory or other ab initio methods [41–46].

3.3 Experimental Work

3.3.1 Experimental Methods

The properties of magnetic molecules are investigated with a variety of well-
known techniques. Standard investigations include the determination of ato-
mic positions of crystallized substances by means of x-ray spectroscopy as
well as the determination of the zero-field (weak-field) magnetic susceptibi-
lity. The latter method is often used to obtain a first estimate of the involved
exchange parameters analyzing the high temperature behavior of the suscep-
tibility, see e. g. [47].

If the exchange parameters turn out to be of the order of some (ten) Kelvin
or less it is illuminative to perform high-field low-temperature magnetization
measurements for instance with pulsed fields that can extend up to 60 Tesla,
see e. g. [36,48]. The measured low-temperature magnetization curve exhibits
a step structure which reveals additional and often more accurate information
about the exchange parameters and the Landé g-factor. Alternatively torque
magnetometry [16, 33] and micro squid techniques [49, 50] are used. These
methods are as well applied in slowly-varying fields where magnetic molecules
may behave as single-molecule magnets and show a noticeable hysteresis.

Resonance techniques are exploited in order to determine the gap struc-
ture of the energy spectrum of a magnetic molecule subject to a magnetic
field. Electron Spin/Parametric Resonance (ESR/EPR) [12] measures in the
GHz region whereas Nuclear Magnetic Resonance (NMR) measures in the
MHz region and therefore the latter one is often used to determine level
crossings [22, 23, 29, 30, 51]. Sometimes ESR is replaced by µSR, a method
where a muon is implanted in the sample in order the have a rather local
probe [52,53].

Neutron scattering [54] can also be considered as a resonance technique.
It also probes the gap structure of the energy spectrum at a given field
[16,55,56].

Not so often applied are Mössbauer [57] and photoemmission spectroscopy
[58, 59] as well as calorimetric methods [60], since the latter suffers from
phonon contributions.
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3.3.2 Phenomena of Current Interest

Besides the desire to understand magnetism on a molecular scale and the
structure and origin of the appropriate spin Hamiltonian some investigated
phenomena are of very general interest for a broad community.

From the point of view of further applications the exciting fact, that
some magnetic molecules possess a large ground state spin, e. g. S = 10 for
Mn12 and Fe8 as well as a sufficient anisotropy barrier, attracts very much
attention. Such molecules show a pronounced hysteresis and are thus called
single-molecule magnets (SMM) [1]. Nevertheless, an initial magnetization is
not stable in molecular magnets but can tunnel through the anisotropy barrier
which in this context is called quantum tunneling of the magnetic moment
[21, 24, 61–64]. The tunnel rates especially for the low-lying magnetic levels,
with e. g. M = ±10, are very small, but can be enhanced if the system is first
excited to higher-lying levels with smaller magnetic moment. Depending on
the mechanism used these processes are termed thermally assisted tunneling
[65] or phonon assisted tunneling [66].

Another very promising effect is the so called “Light Induced Excited
Spin State Trapping” (LIESST) [11] which can be observed in spin crosso-
ver substances. Such substances are characterized by a low-spin ground state
and a higher-lying high-spin state which is meta stable. It is then possible
to switch between these states by means of light irradiation, temperature,
or pressure. The meachanism can be understood as follows. Spin-crossover
molecules can be modeled with a one-dimensional effective oscillator Hamil-
tonian where the oscillator potential parametrically depends on total spin,
for instance of the six-fold coordinated iron in the center of the molecule.
It is then possible to switch the molecules from the low-spin ground state
via an intermediate state to a high-spin state by irradiation with laser light
of an appropriate frequency. The magnetic transition is accompanied by a
structural transition, i. e. the molecule changes its size etc. and consequently
some of its properties like color. This process is reversible, i. e. with a dif-
ferent frequency the molecule can be switched back to the original low-spin
state. Due to the very different density of states of the two spin configu-
rations the switching can also be performed thermally or even by applying
pressure.

A rather young field is the investigation of low-dimensional structures
built from interacting magnetic molecules. These structures may grow “na-
turally” while the substance crystallizes [67, 68] or “on purpose” driven by
chemical reactions which interlink neighboring molecules [38–40]. The addi-
tional interaction may lead to additional features of the substance for instance
to an ordering of the total spins of the molecules at low temperatures. The
disappearance of such an order between moments of magnetic molecules ex-
presses itself as a phase transition and is visible for instance in the specific
heat and susceptibility data [68].
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3.4 Theoretical Techniques and Results

3.4.1 Hamiltonian

It appears that in the majority of these molecules the interaction between
the localized single-particle magnetic moments can be rather well described
by the Heisenberg model with isotropic (nearest neighbor) interaction and an
additional anisotropy term [12–16]. Dipolar interactions are usually of minor
importance. It is also found that antiferromagnetic interactions are favored
in most molecules leading to nontrivial ground states.

Heisenberg Hamiltonian

For many magnetic molecules the total Hamilton operator can be written as

H∼ = H∼ Heisenberg +H∼ anisotropy +H∼ Zeeman (3.1)

H∼ Heisenberg = −
∑

u,v

Juvs∼(u) · s∼(v) (3.2)

H∼ anisotropy = −
N∑

u=1

du(e(u) · s∼(u))2 (3.3)

H∼ Zeeman = gµBB · S∼ . (3.4)

The Heisenberg Hamilton operator1 in the form given in (3.2) is isotropic, Juv

is a symmetric matrix containing the exchange parameters between spins at
sites u and v. The exchange parameters are usually given in units of energy,
and Juv < 0 corresponds to antiferromagnetic, Juv > 0 to ferromagnetic
coupling2. The sum in (3.2) runs over all possible tuples (u, v). The vector
operators s∼(u) are the single-particle spin operators.

The anisotropy terms (3.3) usually simplify to a large extend, for instance
for spin rings, where the site-dependent directions e(u) are all equal, e. g.
e(u) = ez and the strength as well is the same for all sites du = d.

The third part (Zeeman term) in the full Hamiltonian describes the in-
teraction with the external magnetic field. Without singe-site and g-value
anisotropy the direction of the field can be assumed to be along the z-axis
which simplifies the Hamiltonian very much.

Although the Hamiltonian looks rather simple, the eigenvalue problem is
very often not solvable due to the huge dimension of the Hilbert space or
because the number of exchange constants is too big to allow an accurate
determination from experimental data. Therefore, one falls back to effective
single-spin Hamiltonians for molecules with non-zero ground state spin and
a large enough gap to higher-lying multiplets.
1 Operators are denoted by a tilde.
2 One has to be careful with this definition since it varies from author to author
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Single-Spin Hamiltonian

For molecules like Mn12 and Fe8 which possess a high ground state spin and
well separated higher lying levels the following single-spin Hamiltonian

H∼ = −D2S∼
2
z −D4S∼

4
z +H∼

′ (3.5)

H∼
′ = gµBBxS∼x (3.6)

is appropriate, see e. g. [23]. The first two terms of the Hamilton operator H∼
represent the anisotropy whereas H∼

′ is the Zeeman term for a magnetic field
along the x-axis. The total spin is fixed, i. e. S = 10 for Mn12 and Fe8, thus
the dimension of the Hilbert space is dim(H) = 2S + 1.

The effective Hamiltonian (3.5) is sufficient to describe the low-lying spec-
trum and phenomena like magnetization tunneling. Since H∼

′ does not com-
mute with the z-component of the total spin S∼z, every eigenstate |M 〉 of S∼z,
i. e. the states with good magnetic quantum number M , is not stationary but
will tunnel through the barrier and after half the period be transformed into
| −M 〉.

3.4.2 Evaluating the Spectrum

The ultimate goal is to evaluate the complete eigenvalue spectrum of the full
Hamilton operator (3.1) as well as all eigenvectors, compare also the chapter
by Laflorencie and Poilblanc. Since the total dimension of the Hilbert space
is usually very large, e. g. dim(H) = (2s + 1)N for a system of N spins of
equal spin quantum number s, a straightforward diagonalization of the full
Hamilton matrix is not feasible. Nevertheless, very often the Hamilton matrix
can be decomposed into a block structure because of spin symmetries or space
symmetries. Accordingly the Hilbert space can be decomposed into mutually
orthogonal subspaces. Then for a practical evaluation only the size of the
largest matrix to be diagonalized is of importance (relevant dimension).

Product Basis

The starting point for any diagonalization is the product basis |m 〉 =
|m1, . . . ,mu, . . . ,mN 〉 of the single-particle eigenstates of all s∼z(u)

s∼z(u) |m1, . . . ,mu, . . . ,mN 〉 = mu |m1, . . . ,mu, . . . ,mN 〉 . (3.7)

These states are sometimes called Ising states. They span the full Hilbert
space and are used to construct symmetry-related basis states.
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Symmetries of the Problem

Since the isotropic Heisenberg Hamiltonian includes only a scalar product
between spins, this operator is rotationally invariant in spin space, i. e. it
commutes with S∼ and thus also with S∼z

[
H∼ Heisenberg,S∼

2
]

= 0 ,
[
H∼ Heisenberg, S∼z

]
= 0 . (3.8)

In a case where anisotropy is negligible a well-adapted basis is thus given by
the simultaneous eigenstates |S,M,α 〉 of S∼

2 and S∼z, where α enumerates
those states belonging to the same S and M [69, 70]. Since the applied ma-
gnetic field can be assumed to point into z-direction for vanishing anisotropy
the Zeeman term automatically also commutes with H∼ Heisenberg, S∼

2, and S∼z.
Since M is a good quantum number the Zeeman term does not need to be
included in the diagonalization but can be added later.

Besides spin symmetries many molecules possess spatial symmetries. One
example is given by spin rings which have a translational symmetry. In general
the symmetries depend on the point group of the molecule; for the evaluation
of the eigenvalue spectrum its irreducible representations have to be used [13,
16,69]. Thus, in a case with anisotropy one looses spin rotational symmetries
but one can still use space symmetries. Without anisotropy one even gains a
further reduction of the relevant dimension.

Dimension of the Problem

The following section illuminates the relevant dimensions assuming certain
symmetries3.

If no symmetry is present the total dimension is just

dim (H) =
N∏

u=1

(2s(u) + 1) (3.9)

for a spin array of N spins with various spin quantum numbers. In many
cases the spin quantum numbers are equal resulting in a dimension of the
total Hilbert space of dim(H) = (2s+ 1)N .

If the Hamiltonian commutes with S∼z then M is a good quantum number
and the Hilbert space H can be divided into mutually orthogonal subspaces
H(M)

H =
+Smax⊕

M=−Smax

H(M) , Smax =
N∑

u=1

s(u) . (3.10)

3 Work done with Klaus Bärwinkel and Heinz-Jürgen Schmidt, Universität Osn-
abrück, Germany.
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For given values of M , N and of all s(u) the dimension dim (H(M)) can be
determined as the number of product states (3.7), which constitute a basis
in H(M), with

∑
u mu = M . The solution of this combinatorial problem can

be given in closed form [70]

dim (H(M)) =
1

(Smax −M)!

[(
d

dz

)Smax−M N∏

x=1

1− z2s(x)+1

1− z

]

z=0

.(3.11)

For equal single-spin quantum numbers s(1) = · · · = s(N) = s, and thus a
maximum total spin quantum number of Smax = Ns, (3.11) simplifies to

dim (H(M)) = f(N, 2s+ 1, Smax −M) with (3.12)

f(N,µ, ν) =
�ν/µ∑

n=0

(−1)n

(
N

n

)(
N − 1 + ν − nµ

N − 1

)
.

In both formulae (3.11) and (3.12), M may be replaced by |M | since the
dimension of H(M) equals those of H(−M). �ν/µ� in the sum symbolizes
the greatest integer less or equal to ν/µ. Equation (3.12) is known as a result
of de Moivre [71].

If the Hamiltonian commutes with S∼
2 and all individual spins are iden-

tical the dimensions of the orthogonal eigenspaces H(S,M) can also be de-
termined. The simultaneous eigenspaces H(S,M) of S∼

2 and S∼z are span-
ned by eigenvectors of H∼ . The one-dimensional subspace H(M = Smax) =
H(Smax, Smax), especially, is spanned by |Ω 〉, a state called magnon vacuum.
The total ladder operators (spin rising and lowering operators) are

S∼
± = S∼x ± i S∼y . (3.13)

For S > M , S∼
− maps any normalized H∼ -eigenstate ∈ H(S,M + 1) onto an

H∼ -eigenstate ∈ H(S,M) with norm
√
S(S + 1)−M(M + 1).

For 0 ≤M < Smax, H(M) can be decomposed into orthogonal subspaces

H(M) = H(M,M)⊕ S∼
−H(M + 1) (3.14)

with

S∼
−H(M + 1) =

⊕

S≥M+1

H(S,M) . (3.15)

In consequence, the diagonalization of H∼ in H has now been traced back
to diagonalization in the subspaces H(S, S), the dimension of which are for
S < Smax
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dim (H(S, S)) = dim (H(M = S))− dim (H(M = S + 1)) (3.16)

and can be calculated according to (3.12).
As an example for space symmetries I would like to discuss the transla-

tional symmetry found in spin rings. The discussed formalism can as well be
applied to other symmetry operations which can be mapped onto a transla-
tion. Any such translation is represented by the cyclic shift operator T∼ or a
multiple repetition. T∼ is defined by its action on the product basis (3.7)

T∼ |m1, . . . ,mN−1,mN 〉 = |mN ,m1, . . . ,mN−1 〉 . (3.17)

The eigenvalues of T∼ are the N -th roots of unity

zk = exp
{
−i2πk

N

}
, k = 0, . . . , N − 1 , pk = 2πk/N , (3.18)

where k will be called translational (or shift) quantum number and pk momen-
tum quantum number or crystal momentum. The shift operator T∼ commutes
not only with the Hamiltonian but also with total spin. Any H(S,M) can
therefore be decomposed into simultaneous eigenspaces H(S,M, k) of S∼

2, S∼z

and T∼.
In the following we demonstrate how an eigenbasis of both S∼z and T∼

can be constructed, this basis spans the orthogonal Hilbert spaces H(M,k).
How total spin can be included by means of an irreducible tensor operator
approach is described in Refs. [13, 16,69].

A special decomposition of H into orthogonal subspaces can be achieved
by starting with the product basis and considering the equivalence relation

|ψ 〉 ∼= |φ 〉 ⇔ |ψ 〉 = T∼
n |φ 〉 , n ∈ {1, 2, . . . , N} (3.19)

for any pair of states belonging to the product basis. The equivalence relation
then induces a complete decomposition of the basis into disjoint subsets, i. e.
the equivalence classes. A “cycle” is defined as the linear span of such an
equivalence class of basis vectors. The obviously orthogonal decomposition
of H into cycles is compatible with the decomposition of H into the various
H(M). Evidently, the dimension of a cycle can never exceed N . Cycles are
called “proper cycles” if their dimension equals N , they are termed “epicy-
cles” else. One of the N primary basis states of a proper cycle may arbitrarily
be denoted as

|ψ1 〉 = |m1, . . . ,mN 〉 (3.20)

and the remaining ones may be enumerated as

|ψn+1 〉 = T∼
n |ψ1 〉 , n = 1, 2, . . . , N − 1 . (3.21)
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The cycle under consideration is likewise spanned by the states

|χk 〉 =
1√
N

N−1∑

ν=0

(
ei 2π k

N T∼

)ν

|ψ1 〉 (3.22)

which are eigenstates of T∼ with the respective shift quantum number k. Con-
sequently, every k occurs once in a proper cycle. An epicycle of dimension
D is spanned by D eigenstates of T∼ with each of the translational quantum
numbers k = 0, N/D, . . . , (D − 1)N/D occurring exactly once.

As a rule of thumb one can say that the dimension of each H(M,k) is
approximately dim(H(M,k)) ≈ dim(H(M))/N . An exact evaluation of the
relevant dimensions for spin rings can be obtained from [70].

Exact Diagonalization

If the relevant dimension is small enough the respective Hamilton matrices
can be diagonalized, either analytically [70, 72, 73] or numerically, see e. g.
[13, 69,74–79], and the chapter by Laflorencie and Poilblanc.

Again, how such a project is carried out, will be explained with the help of
an example, a simple spin ring with N = 6 and s = 1/2. The total dimension
is dim(H) = (2s+ 1)N = 64. The Hamilton operator (3.2) simplifies to

H∼ Heisenberg = −2J
N∑

u=1

s∼(u) · s∼(u+ 1) , N + 1 ≡ 1 . (3.23)

We start with the magnon vacuum |Ω 〉 = |+ + + + ++ 〉 which spans the
Hilbert space H(M) with M = Ns = 3. “±” are shorthand notations for
m = ±1/2. The dimension of the subspace dim(H(M = Ns)) is one and the
energy eigenvalue is EΩ = −2JNs2 = −3J . |Ω 〉 is an eigenstate of the shift
operator with k = 0. Since S is also a good quantum number in this example
|Ω 〉 has to be an eigenstate of S∼

2, too, the quantum number is S = Ns.
The next subspace H(M) with M = Ns − 1 = 2 is spanned by

| −+ + + ++ 〉 and the five other vectors which are obtained by repetitive
application of T∼. This subspace obviously has the dimension N , and the cycle
spanned by T∼

n | −+ + + ++ 〉, n = 0, . . . , N − 1 is a proper one. Therefore,
each k quantum number arises once. The respective eigenstates of T∼ can be
constructed according to (3.22) as

|M = 2, k 〉 =
1√
N

N−1∑

ν=0

(
ei 2π k

N T∼

)ν

| −+ + + ++ 〉 . (3.24)

All subspaces H(M,k) have dimension one. Since S∼
− |Ω 〉 is a state belonging

to H(M = Ns− 1) with the same k-quantum number as |Ω 〉 it is clear that
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|M = 2, k = 0 〉 is a already an eigenstate of S∼
2 with S = Ns. The other

|M = 2, k �= 0 〉 must have S = Ns− 1.
The next subspace H(M) with M = Ns − 2 = 1 is spanned by three

basic vectors, i. e. | − −+ + ++ 〉, | −+−+ ++ 〉, | −+ +−++ 〉 and the
repetitive applications of T∼ onto them. The first two result in proper cycles,
the third vector | −+ +−++ 〉 results in an epicycle of dimension three,
thus for the epicycle we find only k quantum numbers k = 0, 2, 4. The energy
eigenvalues found in the subspace H(M = Ns− 1) (“above”) must reappear
here which again allows to address an S quantum number to these eigenva-
lues. The dimension of the subspace H(M = 1) is 15, the dimensions of the
subspaces H(M,k) are 3 (k = 0), 2 (k = 1), 3 (k = 2), 2 (k = 3), 3 (k = 4),
and 2 (k = 5).

The last subspace which has to be considered belongs to M = 0 and is
spanned by | − − −+ ++ 〉, | − −+−++ 〉, | −+−−++ 〉, | −+−+−+ 〉
and repetitive applications of T∼. Its dimension is 20. Here | −+−+−+ 〉
leads to an epicycle of dimension two.

The Hamilton matrices in subspaces with M < 0 need not to be diagonali-
zed due to the S∼z-symmetry, i. e. eigenstates with negative M can be obtained
by transforming all individual mu → −mu. Summing up the dimensions of
all H(M) then yields 1 + 6 + 15 + 20 + 15 + 6 + 1 = 64

√
.

Figure 3.5 shows the resulting energy spectrum both as a function of total
spin S as well as a function of translational quantum number k.

Fig. 3.5. Energy eigenvalues as a function of total spin quantum number S (l.h.s.)
and k (r.h.s.)

Projection and Lanczos Method

Complex hermitian matrices can be completely diagonalized numerically up
to a size of about 10,000 by 10,000 which corresponds to about 1.5 Gigabyte of
necessary RAM. Nevertheless, for larger systems one can still use numerical
methods to evaluate low-lying energy levels and the respective eigenstates
with high accuracy.
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A simple method is the projection method [77] which rests on the multiple
application of the Hamiltonian on some random trial state.

To be more specific let’s approximate the ground state of a spin system.
We start with a random trial state |φ0 〉 and apply an operator which “cools”
the system. This operator is given by the time evolution operator with ima-
ginary time steps

| φ̃1 〉 = exp
{
−εH∼

}
|φ0 〉 . (3.25)

Expanding |φ0 〉 into eigenstates | ν 〉 of the Hamilton operator elucidates
how the method works

| φ̃1 〉 =
∑

ν=0

exp {−εEν} | ν 〉〈 ν |φ0 〉 (3.26)

= exp {−εE0}
∑

ν=0

exp {−ε(Eν − E0)} | ν 〉〈 ν |φ0 〉 . (3.27)

Relative to the ground state component all other components are exponen-
tially suppressed. For practical purposes equation (3.26) is linearized and
recursively used

| φ̃i+1 〉 =
(
1− εH∼

)
|φi 〉 , |φi+1 〉 =

| φ̃i+1 〉√
〈 φ̃i+1 | φ̃i+1 〉

. (3.28)

ε has to be small enough in order to allow the linearization of the exponential.
It is no problem to evaluate several higher-lying states by demanding that
they have to be orthogonal to the previous ones. Restricting the calculation
to orthogonal eigenspaces yields low-lying states in these eigenspaces which
allows to evaluate even more energy levels. The resulting states obey the
properties of the Ritz variational principle, i. e. they lie above the ground
state and below the highest one.

Another method to partially diagonalize a huge matrix was proposed by
Cornelius Lanczos in 1950 [80, 81]. Also this method uses a (random) initial
vector. It then generates an orthonormal system in such a way that the repre-
sentation of the operator of interest is tridiagonal. Every iteration produces
a new tridiagonal matrix which is by one row and one column bigger than
the previous one. With growing size of the matrix its eigenvalues converge
against the true ones until, in the case of finite dimensional Hilbert spaces,
the eigenvalues reach their true values. The key point is that the extremal
eigenvalues converge rather quickly compared to the other ones [82]. Thus
it might be that after 300 Lanczos steps the ground state energy is already
approximated to 10 figures although the dimension of the underlying Hilbert
space is 108.

A simple Lanczos algorithm looks like the following. One starts with an
arbitrary vector |ψ0 〉, which has to have an overlap with the (unknown)
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ground state. The next orthogonal vector is constructed by application of H∼
and projecting out the original vector |ψ0 〉

|ψ′
1 〉 = (1− |ψ0 〉〈ψ0 | )H∼ |ψ0 〉 = H∼ |ψ0 〉 − 〈ψ0 |H∼ |ψ0 〉 |ψ0 〉 , (3.29)

which yields the normalized vector

|ψ1 〉 =
|ψ′

1 〉√
〈ψ′

1 |ψ′
1 〉

. (3.30)

Similarly all further basis vectors are generated

|ψ′
k+1 〉 = (1− |ψk 〉〈ψk | − |ψk−1 〉〈ψk−1 | )H∼ |ψk 〉 (3.31)

= H∼ |ψk 〉 − 〈ψk |H |ψk 〉 |ψk 〉 − 〈ψk−1 |H∼ |ψk 〉 |ψk−1 〉

and

|ψk+1 〉 =
|ψ′

k+1 〉√
〈ψ′

k+1 |ψ′
k+1 〉

. (3.32)

The new Lanczos vector is by construction orthogonal to the two previous
ones. Without proof we repeat that it is then also orthogonal to all other pre-
vious Lanczos vectors. This constitutes the tridiagonal form of the resulting
Hamilton matrix

Ti,j = 〈ψi |H∼ |ψj 〉 with Ti,j = 0 if |i− j| > 1 . (3.33)

The Lanczos matrix T can be diagonalized at any step. Usually one iterates
the method until a certain convergence criterion is fulfilled.

The eigenvectors of H∼ can be approximated using the eigenvectors |φµ 〉
of T

|χµ 〉 ≈
n∑

i=0

〈ψi |φµ 〉 |ψi 〉 , (3.34)

where µ labels the desired energy eigenvalue, e. g. the ground state energy.
n denotes the number of iterations.

The simple Lanczos algorithm has some problems due to limited accuracy.
One problem is that eigenvalues may collapse. Such problems can be solved
with more refined formulations of the method [81].

DMRG

The DMRG technique [83] has become one of the standard numerical methods
for quantum lattice calculations in recent years [84, 85]. Its basic idea is the
reduction of Hilbert space while focusing on the accuracy of a target state.
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For this purpose the system is divided into subunits – blocks – which are
represented by reduced sets of basis states. The dimension m of the truncated
block Hilbert space is a major input parameter of the method and to a large
extent determines its accuracy.

DMRG is best suited for chain-like structures. Many accurate results have
been achieved by applying DMRG to various (quasi-)one-dimensional systems
[78, 86, 87]. The best results were found for the limit of infinite chains with
open boundary conditions. It is commonly accepted that DMRG reaches
maximum accuracy when it is applied to systems with a small number of
interactions between the blocks, e. g. systems with only nearest-neighbor
interaction [84].

It is not a priori clear how good results for finite systems like magnetic
molecules are4. Such systems are usually not chain-like, so in order to carry
out DMRG calculations a mapping onto a one-dimensional structure has to
be performed [84]. Since the spin array consists of a countable number of
spins, any arbitrary numbering is already a mapping onto a one-dimensional
structure. However, even if the original system had only nearest-neighbor
exchange, the new one-dimensional system has many long-range interactions
depending on the way the spins are enumerated. Therefore, a numbering
which minimizes long range interactions is preferable. Figure 3.6 shows the
graph of interactions for the molecule {Mo72Fe30} which we want to consider
as an example in the following [88].
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Fig. 3.6. One-dimensional projection of the icosidodecahedron: the lines represent
interactions

For finite systems a block algorithm including sweeps, which is similar to
the setup in White’s original article [83], has turned out to be most efficient.
Two blocks are connected via two single spin sites, these four parts form the
superblock see Fig. 3.7.

NN−121 p+1p

Fig. 3.7. Block setup for DMRG “sweep” algorithm: The whole system of N spins
constitutes the superblock. The spins {1, 2, . . . , p} belong to the left block, the
other spins {p+ 1, . . . , N} to the right block

4 Work done with Matthias Exler, Universität Osnabrück, Germany.
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For illustrative purposes we use a simple Heisenberg Hamiltonian, com-
pare (3.2). The Hamiltonian is invariant under rotations in spin space. There-
fore, the total magnetic quantum number M is a good quantum number and
we can perform our calculation in each orthogonal subspaceH(M) separately.

Since it is difficult to predict the accuracy of a DMRG calculation, it is ap-
plied to an exactly diagonalizable system first. The most realistic test system
for the use of DMRG for {Mo72Fe30} is the icosidodecahedron with spins
s = 1/2. This fictitious molecule, which possibly may be synthesized with va-
nadium ions instead of iron ions, has the same structure as {Mo72Fe30}, but
the smaller spin quantum number reduces the dimension of the Hilbert space
significantly. Therefore a numerically exact determination of low-lying levels
using a Lanczos method is possible [89]. These results are used to analyze
the principle feasibility and the accuracy of the method.

The DMRG calculations were implemented using the enumeration of the
spin sites as shown in Figs. 3.6 and 3.8. This enumeration minimizes the
average interaction length between two sites.
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Fig. 3.8. Two-dimensional projection of the icosidodecahedron, the site numbers
are those used in our DMRG algorithm

In Fig. 3.9 the DMRG results (crosses) are compared to the energy ei-
genvalues (circles) determined numerically with a Lanczos method [88, 89].
Very good agreement of both sequences, with a maximal relative error of
less than 1% is found. Although the high accuracy of one-dimensional cal-
culations (often with a relative error of the order of 10−6) is not achieved,
the result demonstrates that DMRG is applicable to finite 2D spin systems.
Unfortunately, increasing m yields only a weak convergence of the relative
error, which is defined relative to the width of the spectrum

ε (m) =
EDMRG (m)− E0∣∣EAF

0 − EF
0

∣∣ . (3.35)

The dependence for a quasi two-dimensional structure like the icosidodeca-
hedron is approximately proportional to 1/m (see Fig. 3.10). Unfortunately,
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Fig. 3.9. Minimal energy eigenvalues of the s = 1/2 icosidodecahedron. The
DMRG result with m = 60 is depicted by crosses, the Lanczos values by circles.
The rotational band is discussed in subsection 3.4.3
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Fig. 3.10. Dependence of the approximate ground state energy on the DMRG
parameter m. E0 is the true ground state energy in the case s = 1/2 and the
extrapolated one for s = 5/2

such weak convergence is characteristic for two-dimensional systems in con-
trast to one-dimensional chain structures, where the relative error of the
approximate energy was reported to decay exponentially with m [83]. Ne-
vertheless, the extrapolated ground state energy for s = 1/2 deviates only by
ε = 0.7 % from the ground state energy determined with a Lanczos algorithm.

The major result of the presented investigation is that the DMRG ap-
proach delivers acceptable results for finite systems like magnetic molecules.
Nevertheless, the accuracy known from one-dimensional systems is not rea-
ched.
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Spin-Coherent States

Spin-coherent states [90] provide another means to either treat a spin system
exactly and investigate for instance its dynamics [91] or to use spin coherent
states in order to approximate the low-lying part of the spectrum. They are
also used in connection with path integral methods. In the following the basic
ideas and formulae will be presented.

The obvious advantage of spin-coherent states is that they provide a
bridge between classical spin dynamics and quantum spin dynamics. Spin
coherent states are very intuitive since they parameterize a quantum state
by the expectation value of the spin operator, e. g. by the two angles which
represent the spin direction.

Spin coherent states | z 〉 are defined as

| z 〉 =
1

(1 + |z|2)s

2s∑

p=0

√(
2s
p

)
zp | s,m = s− p 〉 , z ∈ C . (3.36)

In this definition spin-coherent states are characterized by the spin length s
and a complex value z. The states (3.36) are normalized but not orthogonal

〈 z | z 〉 = 1 , 〈 y | z 〉 =
(1 + y∗z)2s

(1 + |y|2)s(1 + |z|2)s
.

Spin-coherent states provide a basis in single-spin Hilbert space, but they
form an overcomplete set of states. Their completeness relation reads

1∼ =
2s+ 1
π

∫
d2z

| z 〉〈 z |
(1 + |z|2)2 , d2z = dRe(z) dIm(z) . (3.37)

The intuitive picture of spin-coherent states becomes obvious if one trans-
forms the complex number z into angles on a Riemann sphere

z = tan(θ/2)eiφ , 0 ≤ θ < π , 0 ≤ φ < 2π . (3.38)

Thus, spin-coherent states may equally well be represented by two polar
angles θ and φ. Then the expectation value of the spin operator s∼ is simply

〈 θ, φ | s∼ | θ, φ 〉 = s




sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)



 . (3.39)

Using (3.38) the definition of the states | θ, φ 〉 which is equivalent to (3.36)
is then given by

| θ, φ 〉 =
2s∑

p=0

√(
2s
p

)
[cos(θ/2)](2s−p) [

eiφ sin(θ/2)
]p | s,m = s− p 〉(3.40)
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and the completeness relation simplifies to

1∼ =
2s+ 1

4π

∫
dΩ | θ, φ 〉〈 θ, φ | . (3.41)

Product states of spin-coherent states span the many-spin Hilbert space. A
classical ground state can easily be translated into a many-body spin-coherent
state. One may hope that this state together with other product states can
provide a useful set of linearly independent states in order to approximate
low-lying states of systems which are too big to handle otherwise. But it is
too early to judge the quality of such approximations.

3.4.3 Properties of Spectra

33excitation spectrum!spinningIn the following chapter I am discussing some
properties of the spectra of magnetic molecules with isotropic and antiferro-
magnetic interaction.

Non-bipartite Spin Rings

With the advent of magnetic molecules it appears to be possible to synthesize
spin rings with an odd number of spins. Although related to infinite spin
rings and chains such systems have not been considered mainly since it does
not really matter whether an infinite ring has an odd or an even number of
spins. In addition the sign rule of Marshall and Peierls [92] and the famous
theorems of Lieb, Schultz, and Mattis [93, 94] provided valuable tools for
the understanding of even rings which have the property to be bipartite
and are thus non-frustrated. These theorems explain the degeneracy of the
ground states in subspaces H(M) as well as their shift quantum number k or
equivalently crystal momentum quantum number pk = 2πk/N .

Nowadays exact diagonalization methods allow to evaluate eigenvalues
and eigenvectors of H∼ for small even and odd spin rings of various numbers
N of spin sites and spin quantum numbers s where the interaction is gi-
ven by antiferromagnetic nearest neighbor exchange [74–76,95–97]. Although
Marshall-Peierls sign rule and the theorems of Lieb, Schultz, and Mattis do
not apply to non-bipartite rings, i. e. frustrated rings with odd N , it turns
out that such rings nevertheless show astonishing regularities5. Unifying the
picture for even and odd N , we find for the ground state without excep-
tion [96,97]:

1. The ground state belongs to the subspaceH(S) with the smallest possible
total spin quantum number S; this is either S = 0 for N ·s integer, then
the total magnetic quantum number M is also zero, or S = 1/2 for N ·s
half integer, then M = ±1/2.

5 Work done with Klaus Bärwinkel and Heinz-Jürgen Schmidt, Universität Osn-
abrück, Germany.
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Table 3.1. Properties of ground and first excited state of AF Heisenberg rings for
various N and s: ground state energy E0, gap ∆E, degeneracy deg, total spin S
and shift quantum number k

s N
2 3 4 5 6 7 8 9 10

1.5 0.5 1 0.747 0.934 0.816 0.913 0.844 0.903 E0/(NJ)
1
2 1 4 1 4 1 4 1 4 1 deg

0 1/2 0 1/2 0 1/2 0 1/2 0 S
1 1, 2 0 1, 4 3 2, 5 0 2, 7 5 k

4.0 3.0 2.0 2.236 1.369 2.098 1.045 1.722 0.846 ∆E/|J |
1
2 3 4 3 2 3 8 3 8 3 deg

1 3/2 1 1/2 1 3/2 1 3/2 1 S
0 0 2 0 0 1, 6 4 3, 6 0 k
4 2 3 2.612 2.872 2.735 2.834 2.773 2.819 E0/(NJ)

1 1 1 1 1 1 1 1 1 1 deg
0 0 0 0 0 0 0 0 0 S
0 0 0 0 0 0 0 0 0 k

4.0 2.0 2.0 1.929 1.441 1.714 1.187 1.540 1.050 ∆E/|J |
1 3 9 3 6 3 6 3 6 3 deg

1 1 1 1 1 1 1 1 1 S
1 0, 1, 2 2 2, 3 3 3, 4 4 4, 5 5 k

2. If N ·s is integer, then the ground state is non-degenerate.
3. If N ·s is half integer, then the ground state is fourfold degenerate.
4. If s is integer or N ·s even, then the shift quantum number is k = 0.
5. If s is half integer and N ·s odd, then the shift quantum number turns

out to be k = N/2.
6. If N ·s is half integer, then k = �(N + 1)/4� and k = N − �(N + 1)/4�

is found. �(N + 1)/4� symbolizes the greatest integer less or equal to
(N + 1)/4.

In the case of s = 1/2 one knows the k-quantum numbers for all N via the
Bethe ansatz [76,95], and for spin s = 1 and even N the k quantum numbers
are consistent with [75].

It appears that for the properties of the first excited state such rules do
not hold in general, but only for “high enough” N > 5 [97]. Then, as can be
anticipated from Tables 3.1 and 3.2, we can conjecture that

• if N is even, then the first excited state has S = 1 and is threefold
degenerate, and

• if N is odd and the single particle spin is half-integer, then the first excited
state has S = 3/2 and is eightfold degenerate, whereas

• if N is odd and the single particle spin is integer, then the first excited
state has S = 1 and is sixfold degenerate.

Considering relative ground states in subspaces H(M) one also finds –
for even as well as for odd N – that the shift quantum numbers k show a



176 J. Schnack

Table 3.2. Properties of ground and first excited state of AF Heisenberg rings for
various N and s (continuation): ground state energy E0, gap ∆E, degeneracy deg,
total spin S and shift quantum number k. † – O. Waldmann, private communication.
†† – projection method [77]

s N
2 3 4 5 6 7 8 9 10

7.5 3.5 6 4.973 5.798 5.338 5.732 5.477 5.704†† E0/(NJ)
3
2 1 4 1 4 1 4 1 4 1 deg

0 1/2 0 1/2 0 1/2 0 1/2 0 S
1 1, 2 0 1, 4 3 2, 5 0 2, 7 5 k

4.0 3.0 2.0 2.629 1.411 2.171 1.117 1.838 0.938†† ∆E/|J |
3
2 3 16 3 8 3 8 3 8 3 deg

1 3/2 1 3/2 1 3/2 1 3/2 1 S
0 0, 1, 2 2 2, 3 0 1, 6 4 3, 6 0 k

12 6 10 8.456 9.722 9.045 9.630 9.263†† 9.590†† E0/(NJ)
2 1 1 1 1 1 1 1 1 1 deg

0 0 0 0 0 0 0 0 0 S
0 0 0 0 0 0 0 0 0 k

4.0 2.0 2.0 1.922 1.394 1.652 1.091 1.431†† 0.906†† ∆E/|J |
2 3 9 3 6 3 6 3 6 3 deg

1 1 1 1 1 1 1 1 1 S
1 0, 1, 2 2 2, 3 3 3, 4 4 4, 5 5 k

17.5 8.5 15 12.434 14.645 13.451 14.528† 13.848†† 14.475†† E0/(NJ)
5
2 1 4 1 4 1 4 1 4 1 deg

0 1/2 0 1/2 0 1/2 0 1/2 0 S
1 1, 2 0 1,4 3 2, 5 0 2, 7 5 k

strikingly simple regularity for N �= 3

k ≡ ±(Ns−M)�N
2
� mod N , (3.42)

where �N/2� denotes the smallest integer greater than or equal to N/2 [98].
For N = 3 and 3s − 2 ≥ |M | ≥ 1 one finds besides the ordinary k-quantum
numbers given by (3.42) extraordinary k-quantum numbers, which supple-
ment the ordinary ones to the complete set {k} = {0, 1, 2}.

For even N the k values form an alternating sequence 0, N/2, 0, N/2, . . .
on descending from the magnon vacum with M = Ns as known from the
sign-rule of Marshall and Peierls [92]. For odd N it happens that the ordinary
k-numbers are repeated on descending from M ≤ Ns−1 to M−1 iff N divides
[2(Ns−M) + 1].

Using the k-rule one can as well derive a rule for the relative ground state
energies and for the respective S quantum numbers:

• For the relative ground state energies one finds that if the k-number is
different in adjacent subspaces, Emin(S) < Emin(S + 1) holds. If the k-
number is the same, the energies could as well be the same.
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• Therefore, if N (even or odd) does not devide (2(Ns−M)+1)�N/2�, then
any relative ground state in H(M) has the total spin quantum number
S = |M |.

• This is always true for the absolute ground state which therefore has
S = 0 for Ns integer and S = 1/2 for Ns half integer.

The k-rule (3.42) is founded in a mathematically rigorous way for N
even [92–94], N = 3, M = Ns, M = Ns − 1, and M = Ns − 2 [98]. An
asymptotic proof for large enough N can be provided for systems with an
asymptotically finite excitation gap, i. e. systems with integer spin s for which
the Haldane conjecture applies [99,100]. In all other cases numerical evidence
was collected and the k-rule as a conjecture still remains a challenge [98].

Rotational Bands

For many spin systems with constant isotropic antiferromagnetic nearest neig-
hbor Heisenberg exchange the minimal energies Emin(S) form a rotational
band, i. e. depend approximately quadratically on the total spin quantum
number S [48, 101,102]

Emin(S) ≈ Ea − J
D(N, s)

N
S(S + 1) . (3.43)

The occurrence of a rotational band has been noted on several occasions for
an even number of spins defining a ring structure, e. g. see [102]. The minimal
energies have been described as “following the Landé interval rule” [28–30,
32]. However, we6 find that the same property also occurs for rings with an
odd number of spins as well as for the various polytope configurations we
have investigated, in particular for quantum spins positioned on the vertices
of a tetrahedron, cube, octahedron, icosahedron, triangular prism, and an
axially truncated icosahedron. Rotational modes have also been found in
the context of finite square and triangular lattices of spin-1/2 Heisenberg
antiferromagnets [103,104], compare also the chapter of Richter, Schulenburg,
and Honecker.

There are several systems, like spin dimers, trimers, squares, tetrahedra,
and octahedra which possess a strict rotational band since their Hamiltonian
can be simplified by quadrature. As an example the Heisenberg square, i. e.,
a ring with N = 4 is presented. Because the Hamilton operator (3.23) can be
rewritten as

H∼ = −J
(
S∼

2 − S∼
2
13 − S∼

2
24

)
, (3.44)

S∼13 = s∼(1) + s∼(3) , S∼24 = s∼(2) + s∼(4) , (3.45)

with all spin operators S∼
2, S∼

2
13 and S∼

2
24 commuting with each other and with

H∼ , one can directly obtain the complete set of eigenenergies, and these are
6 Work done together with Marshall Luban, Ames Lab, Iowa, USA.
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characterized by the quantum numbers S, S13 and S24. In particular, the
lowest energy for a given total spin quantum number S occurs for the choice
S13 = S24 = 2s

Emin(S) = −J [S (S + 1)− 2 · 2s (2s+ 1)] = E0 − J S (S + 1) , (3.46)

where E0 = 4s(2s + 1)J is the exact ground state energy. The various ener-
gies Emin(S) form a rigorous parabolic rotational band of excitation energies.
Therefore, these energies coincide with a parabolic fit (crosses connected by
the dashed line on the l.h.s. of Fig. 3.11) passing through the antiferromagne-
tic ground state energy and the highest energy level, i. e., the ground state
energy of the corresponding ferromagnetically coupled system.

Fig. 3.11. Energy spectra of antiferromagnetically coupled Heisenberg spin rings
(horizontal dashes). The crosses connected by the dashed line represent the fit to the
rotational band according to (3.46), which matches both the lowest and the highest
energies exactly. On the l.h.s the dashed line reproduces the exact rotational band,
whereas on the r.h.s. it only approximates it, but to high accuracy. The solid line
on the r.h.s. corresponds to the approximation (3.47)

It turns out that an accurate formula for the coefficient D(N, s) of (3.46)
can be developed using the sublattice structure of the spin array [101]. As
an example we repeat the basic ideas for Heisenberg rings with an even
number of spin sites [32]. Such rings are bipartite and can be decomposed
into two sublattices, labeled A and B, with every second spin belonging to
the same sublattice. The classical ground state (Néel state) is given by an
alternating sequence of opposite spin directions. On each sublattice the spins
are mutually parallel. Therefore, a quantum trial state, where the individual
spins on each sublattice are coupled to their maximum values, SA = SB =
Ns/2, could be expected to provide a reasonable approximation to the true
ground state, especially if s assumes large values. For rings with even N the
approximation to the respective minimal energies for each value of the total
spin S∼ = S∼A + S∼B is then given by [32]

Eapprox
min (S) = −4 J

N

[
S(S + 1)− 2

Ns

2

(
Ns

2
+ 1
)]

. (3.47)
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This approximation exactly reproduces the energy of the highest energy ei-
genvalue, i. e., the ground state energy of the corresponding ferromagnetically
coupled system (S = Ns). For all smaller S the approximate minimal energy
Eapprox

min (S) is bounded from below by the true one (Rayleigh-Ritz variational
principle). The solid curve displays this behavior for the example of N = 6,
s = 3/2 in Fig. 3.11 (r.h.s.). The coefficient “4” in (3.47) is the classical
value, i. e. for each fixed even N the coefficient D(N, s) approaches 4 with
increasing s [101].

The approximate spectrum, (3.47), is similar to that of two spins, S∼A

and S∼B , each of spin quantum number Ns/2, that are coupled by an effec-
tive interaction of strength 4J/N . Therefore, one can equally well say, that
the approximate rotational band considered in (3.47) is associated with an
effective Hamilton operator

H∼
approx = −4 J

N

[
S∼

2 − S∼
2
A − S∼

2
B

]
, (3.48)

where the two sublattice spins, S∼A,S∼B , assume their maximal value SA =
SB = Ns/2. Hamiltonian (3.48) is also known as Hamiltonian of the Lieb-
Mattis model which describes a system where each spin of one sublattice
interacts with every spin of the other sublattice with eaqual strength [94,105].

It is worth noting that this Hamiltonian reproduces more than the lowest
levels in each subspace H(S). At least for bipartite systems also a second
band is accurately reproduced as well as the gap to the quasi-continuum
above, compare Figure 3.12 and [102]. This property is very useful since
the approximate Hamiltonian allows the computation of several observables
without diagonalizing the full Hamiltonian.

It is of course of utmost importance whether the band structure given by
the approximate Hamiltonian (3.48) persists in the case of frustrated mole-
cules. It seems that at least the minimal energies still form a rotational band
which is understandable at least for larger spin quantum numbers s taking
into account that the parabolic dependence of the minimal energies on S
mainly reflects the classical limit for a wide class of spin systems [106].

The following example demonstrates that even in the case of the highly
frustrated molecule {Mo72Fe30} the minimal energies arrange as a “rotational
band”7. In the case of {Mo72Fe30} the spin system is decomposable into three
sub-lattices with sub-lattice spin quantum numbers SA, SB , and SC [48,101].
The corresponding approximate Hamilton operator reads

H∼ approx = −J D
N

[
S∼

2 − γ
(
S∼

2
A + S∼

2
B + S∼

2
C

)]
, (3.49)

where S∼ is the total spin operator and the others are sub-lattice spin ope-
rators. D and γ are allowed to deviate from their respective classical values,
D = 6 and γ = 1, in order to correct for finite s.
7 Work done with Matthias Exler, Universität Osnabrück, Germany.
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Fig. 3.12. The low-lying levels of a spin ring, N = 6 and s = 5/2 in this example,
can be grouped into the lowest (Landé) band, the first excited (Excitation) band
and the quasi-continuum (QC). For the spin levels of the L- and E-band k is given
in brackets followed by the energy. Arrows indicate strong transitions from the L-
band. Associated numbers give the total oscillator strength f0 for these transitions.
With friendly permission by Oliver Waldmann [102]
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Fig. 3.13. DMRG eigenvalues and lowest rotational band of the s = 5/2 icosidode-
cahedron; m = 60 was used except for the lowest and first exited level which were
calculated with m = 120

We use the DMRG method to approximate the lowest energy eigenvalues
of the full Hamiltonian and compare them to those predicted by the rotational
band hypothesis (3.49). Figure 3.13 shows the results and a fit to the lowest
rotational band. Assuming the same dependence on m as in the s = 1/2
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case, the relative error of the DMRG data should also be less than 1%. The
agreement between the DMRG energy levels and the predicted quadratic
dependence is very good. Nevertheless, it remains an open question whether
higher lying bands are present in such a highly frustrated compound.

Magnetization Jumps

Although the spectra of many magnetic molecules possess a rotational band
of minimal energies Emin(S) and although in the classical limit, where the
single-spin quantum number s goes to infinity, the function Emin(S) is even
an exact parabola if the system has co-planar ground states [106], we8 find
that for certain coupling topologies, including the cuboctahedron and the
icosidodecahedron (see Fig. 3.14), that this rule is violated for high total
spins [89,107]. More precisely, for the icosidodecahedron the last four points
of the graph of Emin versus S, i. e. the points with S = Smax to S = Smax−3,
lie on a straight line

Emin(S) = 60Js2 − 6Js(30s− S) . (3.50)

An analogous statement holds for the last three points of the corresponding
graph for the cuboctahedron. These findings are based on numerical calcula-
tions of the minimal energies for several s both for the icosidodecahedron as
well as for the cuboctahedron. For both and other systems a rigorous proof
of the high spin anomaly can be given [89,108].

Fig. 3.14. Structure of the icosidodecahedron (l.h.s.) and the cuboctahedron
(r.h.s.)

The idea of the proof can be summarized as follows: A necessary condi-
tion for the anomaly is certainly that the minimal energy in the one-magnon
space is degenerate. Therefore, localized one-magnon states can be construc-
ted which are also of minimal energy. When placing a second localized ma-
gnon on the spin array there will be a chance that it does not interact with the
8 Work done with Heinz-Jürgen Schmidt, Universität Osnabrück, Andreas

Honecker, Universität Braunschweig, Johannes Richter and Jörg Schulenburg,
Universität Magdeburg, Germany.
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first one if a large enough separation can be achieved. This new two-magnon
state is likely the state of minimal energy in the two-magnon Hilbert space
because for antiferromagnetic interaction two-magnon bound states do not
exist. This procedure can be continued until no further independent magnon
can be placed on the spin array. In a sense the system behaves as if it con-
sists of non-interacting bosons which, up to a limiting number, can condense
into a single-particle ground state. In more mathematical terms: In order to
prove the high-spin anomaly one first shows an inequality which says that all
points (S,Emin(S)) lie above or on the line connecting the last two points.
For specific systems as those mentioned above what remains to be done is
to construct particular states which exactly assume the values of Emin cor-
responding to the points lying on the bounding line, then these states are
automatically states of minimal energy.

The observed anomaly – linear instead of parabolic dependence – results in
a corresponding jump of the magnetization curve M versus B, see Fig. 3.15.
In contrast, for systems which obey the Landé interval rule the magnetiza-
tion curve at very low temperatures is a staircase with equal steps up to the
highest magnetization. The anomaly could indeed be observed in magnetiza-
tion measurements of the Keplerate molecules {Mo72Fe30}. Unfortunately,
the magnetization measurements [36, 48] performed so far suffer from too
high temperatures which smear out the anomaly.

Fig. 3.15. Icosidodecahedron: L.h.s. – minimal energy levels Emin(S) as a function
of total spin S. R.h.s. – magnetization curve at T = 0 [89]

Nevertheless, it may be possible to observe truely giant magnetization
jumps in certain two-dimensional spin systems which possess a suitable cou-
pling (e. g. Kagomé) [107]. In such systems the magnetization jump can be
of the same order as the number of spins, i. e. the jump remains finite – or in
other words is macroscopic – in the thermodynamic limit N →∞. Thus, this
effect is a true macroscopic quantum effect, see also the chapter by Richter,
Schulenburg, and Honecker.
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Bounds

Rigorous results on spin systems have sharpened our understanding of ma-
gnetic phenomena. In addition such results can serve as a basis or source
of inspiration for the development of approximate models. For example, the
inequalities of Lieb and Berezin [109,110] relating spectral properties of quan-
tum systems to those of their classical counterparts provide a foundation for
classical or semi-classical treatments of spin systems.

Exact bounds of the spectra belong to this class of rigorous results. They
may be used as guidance or benchmark for approximate, e. g. variational
methods. In earlier works linear bounds [89] as well as parabolic bounds [111]
could be derived for magnetic spectra.

In this section I would like to present two examples of exact bounds for
antiferromagnetic Heisenberg systems which explicitly use the topological
structure of the spin array9.

The first concept which leads to upper bounds of the minimal energies
Emin(S) rests on “n-cyclicity”, which for n = 2 is related to bi-partiteness
[112]. The key point of the new concept of n-cyclicity is that the oriented
graph of interactions between the spins of the molecule or spin array can be
mapped onto the oriented cyclic graph with n vertices.

It is only in certain cases that different cyclicities n and n′ mean an es-
sential distinctness. This is because for n ≥ 4 any n-cyclic system is also
(n − 2)-cyclic since three successive vertices and the corresponding edges
can be mapped in a forward-backward-forward way, compare the l.h.s. of
Fig. 3.16, which shows a homomorphism of a pentagon onto a triangle, as an
example. Each 2m-ring and hence any 2m-cyclic system is n-cyclic for any po-
sitive integers m,n, since it is 2-cyclic and a 2-cycle can be homomorphically
embedded into any n-cycle.

3
1

?

2 3

1

2 2 3

1

3

2
Fig. 3.16. The pentagon is 5-cyclic and also 3-cyclic (l.h.s.) whereas the tetra-
hedron is not 3-cyclic (r.h.s.), because if the four vertices of the tetrahedron are
attached to the numbers 1, 2, 3 one number must repeat and occurs at adjacent
vertices, which does not happen in the 3-cycle

9 Work done with Klaus Bärwinkel and Heinz-Jürgen Schmidt, Universität Osn-
abrück, Germany.



184 J. Schnack

Hence it makes only sense to distinguish between even-cyclic systems,
which will be called 2-cyclic, and (2n+1)-cyclic system with maximal integer
n. If a spin system is 2-cyclic in our sense it will be bi-partite in the sense
of Refs. [93, 94], but that notion of bi-partiteness is more general than ours
since it also comprises cases with different coupling constants.

We consider some more examples which illustrate the definition of cyc-
licity. A triangular plane lattice with suitable periodic boundary conditions
is 3-cyclic, a square lattice or cubic lattice is 2-cyclic. The kagomé lattice is
3-cyclic but not 2-cyclic. 3-cyclicity is equivalent to 3-colorability [37]. Hence
the octahedron, the dodecahedron, the cuboctahedron, and the icosidodeca-
hedron are 3-cyclic, cf. [37], but the tetrahedron is not, see r.h.s. of Fig. 3.16.

The construction of an upper bound is then realized by constructing an
appropriate trial state which of course according to the Ritz variational prin-
ciple must lead to an upper bound in the energy. In order to find a good
low-lying state in a subspace Emin(M) the total spin lowering operator S∼

−

is applied (Ns−M)-times to the magnon vacuum state |Ω 〉. Of course this
state is still an eigenstate of the Heisenberg Hamiltonian with the same energy
as the magnon vacuum, but using the knowledge about the topological struc-
ture the components |m 〉 can be brought together with appropriate phases
which reflect the n-cyclicity of the spin array. This transformation is done
with the help of a unitary “Bloch” operator U∼� generalizing ideas of [113].
This operator produces a shift in the k-quantum number. For spin rings it is
defined by the following action on the product states

U∼� |m 〉 =
N∏

j=1

exp
{
i
2πj(s−mj)�

n

}
|m 〉 . (3.51)

The trial state is chosen to be

|ϕ 〉 = CMU∼�

(
S∼

−
)(Ns−M)

|Ω 〉 , (3.52)

where CM is a normalization constant,

C2
M =

(Ns+M)!
(2Ns)! (Ns−M)!

. (3.53)

For the Heisenberg Hamiltonian

H∼ = −J
∑

u,v

s∼(u) · s∼(v) , (3.54)

where the sum runs over all (unsorted) interacting pairs (u, v) of spins at
sites u and v, one obtains as the expectation value

〈ϕ |H∼ |ϕ 〉 = −Jγs2 cosα� (3.55)

−J(1− cosα�)
γ

N

(
Ns2 −

2s
(
(Ns)2 −M2

)

2Ns− 1

)
.
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γ denotes the number of interacting spin pairs, i. e. in a spin ring of length
N it would be 2N . The best bound for Emin(M) is obtained if cosα� is as
low as possible, i. e. � = n

2 and cosα� = −1 for even n and � = n±1
2 for odd

n. Therefore, the final result for upper bounds is

Emin(M) ≤ −Jcγs2 − J(1− c)
γ

N

(
Ns2 −

2s
(
(Ns)2 −M2

)

2Ns− 1

)
, (3.56)

where c = −1 in the case of even n and c = − cos π
n for odd n.

The Figs. 3.17 and 3.18 display examples for upper bounds. For the spin
ring with N = 6 presented in Fig. 3.17 which could be regarded as 2- or
3-cyclic one realizes that 2-cyclicity always leads to the best approximation.

Fig. 3.17. Upper and lower bounds of Emin(S) for Heisenberg spin rings with
N = 6 and s = 1/2 (l.h.s.) as well as s = 5/2 (r.h.s.). The solid curves display the
bounds for the minimal energies considering 2-cyclicity and 2-homogeneity

Fig. 3.18. Upper and lower bounds of Emin(S) for the triangular spin lattice with
N = 12 and s = 1/2 (l.h.s.) as well as s = 1 (r.h.s.). The solid curves display the
bounds for the minimal energies considering 3-cyclicity and 3-homogeneity

The second concept which rests on homogeneity of the interaction matrix
leads to lower bounds of the minimal energies Emin(S) [112]. For this purpose
the Heisenberg Hamiltonian can be written in the general form10

10 Please be aware of the missing “-” sign.
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H∼ =
∑

µν

Jµν s∼µ · s∼ν . (3.57)

The matrix J of exchange parameters Jµν is assumed to be symmetric and
having constant row sums j.

Next we turn to the suitable definition of n-homogeneity. Let the set
of spin sites {1, . . . , N} be divided into n disjoint subsets of equal size m,
{1, . . . , N} =

⋃n
ν=1Aν , such that the coupling constants within each Aν are

≤ 0, but ≥ 0 between Aν and Aµ for ν �= µ. Moreover, the partial row sums
are assumed to be constant:

∑

b∈Aµ

Jab =
{
jin if a ∈ Aµ

jex if a �∈ Aµ
. (3.58)

A spin system satisfying these assumptions will be called n-homogeneous,
compare [92–94]). Note that this notion is incommensurable to “n-cyclicity”
defined previously. However, certain rings, the triangular lattice, the kagomé
lattice, and the icosidodecahedron satisfy both definitions. A necessary con-
dition for nearest neighbor Heisenberg systems to be n-homogeneous is that
the number of nearest neighbors, which is assumed to be constant, is divisible
by (n − 1). Actually, spin rings of even N are 2-homogeneous, rings of odd
N are 3-homogeneous if N is divisible by 3.

We recall that 1 = 1√
N

(1, 1, . . . , 1) is an eigenvector of J with eigenvalue
j. Due to the n-homogeneity there are, after a suitable permutation of the
spin sites, further eigenvectors of the form

u(k) = (m : 1,m : ρk,m : ρ2k, . . . ,m : ρ(n−1)k), k = 1, . . . , n− 1 , (3.59)

where (m : x, . . . ) denotes the m-fold repetition of the entry x, and ρ ≡
e2πi/n. The corresponding eigenvalues are jk = jin+jex

∑n−1
p=1 ρ

pk = jin−jex,
hence they coalesce into one (n− 1)-fold degenerate eigenvalue. By applying
the theorem of Geršgorin (c.f. [114], 7.2) this eigenvalue is shown to be the
smallest one jmin.

Next we construct a coupling matrix J̃ with the same eigenspaces as J but
only three different eigenvalues. The three eigenvalues of J̃ can be chosen as

̃ = j, ̃min = jmin, ̃2 = j2 . (3.60)

j2 is the remaining smallest eigenvalue of J
′ (J restricted to the subspace

orthogonal to 1) after eliminating (n − 1)-times jmin from the set of eigen-
values. Thus it can happen that j2 = jmin if jmin is more than (n − 1)-fold
degenerate.

Let us write S∼A ≡
∑

a∈A s∼a for any subset A ⊂ {1, . . . , N}. After choo-

sing H̃∼ to be a Heisenberg Hamiltonian of the form (3.57) with coupling

matrix J̃ one finally finds that
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H∼ ≥ H̃∼ = −α
(
∑

ν

S∼
2
Aν

)
+ (α+ β)Ns(s+ 1) + γ

(
S∼

2 −
∑

ν

S∼
2
Aν

)

≥ j − jmin

N
S(S + 1) +Njmins(s+ 1) + (N − n)(j2 − jmin)s . (3.61)

Since j2− jmin ≥ 0 the bound (3.61) is the better, the smaller n is. This is in
contrast to the upper bound considered in the last section, which is improved
for large odd n.

The Figs. 3.17 and 3.18 display examples for lower bounds. One realizes
that the lower bounds are not as good as the upper ones.

3.5 Dynamics

In this section I would like to outline two branches – tunneling and relaxation
– where the dynamics of magnetic molecules is investigated. The section is
kept rather introductory since the field is rapidly evolving and it is too early
to draw a final picture on all the details of the involved processes.

3.5.1 Tunneling

Tunneling dynamics has been one of the corner stones in molecular magnetism
since its very early days, see e. g. [21, 24,61–63].

The subject can roughly be divided into two parts, one deals with tun-
neling processes of the magnetization in molecules possessing a high ground
state spin and an anisotropy barrier, the second deals with the remaining
tunneling processes, e. g. in molecules which have an S = 0 ground state.

As already mentioned in Sect. 3.4.1 some molecules like Mn12 and Fe8
possess a high ground state spin. Since the higher lying levels are well sepa-
rated from the low-lying S = 10 levels a single-spin Hamiltonian (3.5), which
includes an anisotropy term, is appropriate. Figure 3.19 sketches the energy
landscape for an anisotropy term which is quadratic in S∼z. If the Hamilto-
nian includes terms like a magnetic field in x-direction that do not commute
with S∼z resonant tunneling is observed between states |S,M 〉 and |S,−M 〉.
This behavior is depicted on the l.h.s. of Fig. 3.19 for the transition between
M = −10 and M = 10. If an additional magnetic field is applied in z-direction
the quadratic barrier acquires an additional linear Zeeman term and is chan-
ged like depicted on the r.h.s. of Fig. 3.19. Now tunneling is possible between
states of different |M |, see e. g. [115].

It is rather simple to model the tunneling process in the model Hilbert
space of S = 10. i. e. a space with dimension 2S + 1 = 21. Nevertheless,
in a real substance the tunneling process is accompanied and modified by
other influences. The first major factor is temperature which may enhance
the process, this leads to thermally assisted tunneling [65]. Each such sub-
stance hosts phonons which modify the tunneling process, too, resulting in
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Fig. 3.19. Sketch of the tunneling barrier for a high spin molecule with S = 10,
l.h.s. without magnetic field, r.h.s. with magnetic field, compare (3.5). The arrows
indicate a possible resonant tunneling process

phonon assisted tunneling [66,116–118]. Then local dipolar fields and nuclear
hyperfine fields may strongly affect the relaxation in the tunneling regime [6].
In addition there may be topological quenching due to the symmetry of the
material [119–121]. And last but not least describing such complicated mole-
cules not in effective single-spin models but in many-spin models is still in
an unsatisfactory state, compare [122].

Another kind of tunneling is considered for Heisenberg spin rings with
uniaxial single-ion anisotropy. Classically the ground state of even rings like
Na:Fe6 and Cs:Fe8 is given by a sequence of spin up and down like in Fig. 3.20.
It now turns out that such a Néel-like state, which is formulated in terms of
spin-coherent states (3.40), contributes dominantly to the true ground state
as well as to the first excited state if the anisotropy is large enough [91]. Thus
it is found that the ground state |E0 〉 and the first excited state |E1 〉 can
be approximated as

|E0 〉 ≈
1√
2

( |Néel, 1 〉 ± |Néel, 2 〉) (3.62)

|E1 〉 ≈
1√
2

( |Néel, 1 〉 ∓ |Néel, 2 〉) ,

where the upper sign is appropriate for rings where the number of spins N
is a multiple of 4, e. g. N = 8, and the lower sign is for all other even N .

⇔

Fig. 3.20. Sketch of the tunneling process between Néel-like states on a spin ring.
Without loss of generality the state on the l.h.s. will be denoted by | Néel, 1 〉 and
the state on the r.h.s. will be denoted by | Néel, 2 〉
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Therefore, the tunneling frequency is approximately given by the gap
between ground and first excited state. Experimentally, such a tunnel process
is hard to observe, especially since ESR is sensitive only to the total spin.
What would be needed is a local probe like NMR. This could be accomplished
by replacing one of the iron ions by another isotope.

The tunneling process was further analyzed for various values of the unia-
xial single-ion anisotropy [123]. Since in such a case the cyclic shift symmetry
persists, k is still a good quantum number. Therefore, mixing of states is only
allowed between states with the same k quantum number. This leads to the
conclusion that the low-temperature tunneling phenomena can be under-
stood as the tunneling of the spin vector between different rotational modes
with ∆S = 2, compare Fig. 3.21 and the subsection on rotational bands on
page 177.
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Fig. 3.21. Energy spectrum of spin rings with N = 6 and vanishing anisotropy
at two magnetic fields drawn as a function of the magnetic quantum number
M . The dashed curves represent the lowest-lying parabolas Emin(M) discussed
in Sect. 3.4.3. A white or black circle indicates that a state belongs to k = 0 or
k = N/2, compare Fig. 3.12. States belonging to one spin multiplet are located on
straight lines like that plotted in panel (a) for the S = 4 multiplet. With friendly
permissions by Oliver Waldmann [123]

3.5.2 Relaxation Dynamics

In a time-dependent magnetic field the magnetization tries to follow the field.
Looking at this process from a microscopic point of view, one realizes that,
if the Hamiltonian would commute with the Zeeman term, no transitions
would occur, and the magnetization would not change a tiny bit. There are
basically two sources which permit transitions: non-commuting parts in the
spin Hamiltonian and interactions with the surrounding. In the latter case
the interaction with phonons seems to be most important.

Since a complete diagonalization of the full Hamiltonian including non-
commuting terms as well as interactions like the spin-phonon interaction is
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practically impossible, both phenomena are modeled with the help of rate
equations.

If we start with a Hamiltonian H∼ 0, which may be the Heisenberg Hamil-
tonian and add a non-commuting term H∼

′ like anisotropy the eigenstates of
the full Hamiltonian are superpositions of those of H∼ 0. This expresses itself in
avoided level crossings where the spectrum of H∼ 0 would show level crossings,
compare Fig. 3.22. Transitions between eigenstates of H∼ 0, which may have
good M quantum numbers, can then effectively be modeled with the formula
by Landau, Zener, and Stückelberg [124–128]

p = 1− exp

{
− π∆2

2�gµB |M1 −M2| d
dtB

}
. (3.63)

∆ denotes the energy gap at the avoided level crossing.

M

M M

M

B

E

p

1

1

2

2

∆

Fig. 3.22. Schematic energy spectrum in the vicinity of an avoided level crossing.
The formula by Landau, Zener, and Stückelberg (3.63) approximates the probability
p for the tunneling process from M1 to M2

The effect of phonons is taken into account by means of two principles:
detailed balance, which models the desire of the system to reach thermal
equilibrium and energy conservation, which takes into account that the energy
released or absorbed by the spin system must be absorbed or released by the
phonon system and finally exchanged with the thermostat. The interesting
effects arise since the number of phonons is very limited at temperatures in
the Kelvin-range or below, thus they may easily be used up after a short
time (phonon bottleneck) and have to be provided by the thermostat around
which needs a characteristic relaxation time. Since this all happens in a time-
dependent magnetic field, the Zeeman splittings change all the time and
phonons of different frequency are involved at each time step. In addition
the temperature of the spin system changes during the process because the
equilibration with the thermostat (liq. Helium) is not instantaneous. More
accurately the process is not in equilibrium at all, especially for multi-level
spin systems. Only for two-level systems the time-dependent occupation can
be translated into an apparent temperature. In essence the retarded dynamics
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leads to distinct hysteresis loops which have the shape of a butterfly [129–131].
For more detailed information on dissipative two-level systems the interested
reader is referred to [131,132].
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82. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical

Guide, edited by Z. Bai et al. (Society for Industrial & Applied Mathema-
tics, Philadelphia, 2000).

83. S. R. White, Phys. Rev. B 48, 10345 (1993).
84. Density-Matrix Renormalization, edited by I. Peschel, X. Wang, M. Kaulke,

and K. Hallberg (Springer, Berlin, 1999).
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Abstract. In the last decade it has been proven that the standard spin-wave
theory was able to provide accurate zero-temperature results for a number of low-
dimensional Heisenberg spin systems. In this chapter we introduce the main ingre-
dients of the spin-wave technique using as a working model the two-leg mixed-spin
ferrimagnetic ladder and the Dyson–Maleev boson formalism up to second order in
the spin-wave interaction. In the remainder, we survey typical applications in low-
space dimensionality as well as some recent modifications of the theory admitting
a quantitative analysis in magnetically disordered phases. The presented spin-wave
results are compared with available numerical estimates.

4.1 Introduction

The spin-wave theory is probably one of the most powerful tools ever used in
the theory of magnetism. Originally proposed by Bloch [1,2] and Holstein and
Primakoff [3] as a theory of the ferromagnetic state, it was later extended for
the antiferromagnetic Néel state by Anderson [4], Kubo [5], and Oguchi [6].
Dyson’s profound analysis of spin-wave interactions [7, 8] demonstrated that
spin waves may be used to obtain asymptotic expansions for the thermody-
namic functions of the Heisenberg ferromagnet at low temperatures. Dyson’s
method was generalized by Harris et al. [9] to calculate in a systematic way
spin-spin correlations, spin-wave damping, and various thermodynamic pro-
perties of antiferromagnetic insulators.

It should be noticed that the basis of the spin-wave theory (SWT) for
antiferromagnets is much less established than for ferromagnets. The Dyson–
Maleev transformation [10] gives a correspondence between any operator de-
fined on the Hilbert space of the spin system and an operator on the boson
Hilbert space. Evaluating the required averages for the Bose system, we neces-
sarily make two approximations. First, we expand these quantities, by using
a perturbation formalism in which the unperturbed Hamiltonian is quadratic
in boson operators and the perturbation is the remaining quartic interaction.
Second, we neglect the projection operator in the averages, which takes into
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account the so-called kinematic interactions by canceling the boson states
with more than 2S bosons per lattice site, S being the spin quantum num-
ber of the lattice spin. In the ferromagnetic case, Dyson has argued that
these approximations would lead to results which are asymptotically correct
at low temperatures (T ) to all orders in T . In the antiferromagnetic case,
the situation is less settled due to the zero-point motion, i.e. quantum spin
fluctuations in the Néel state. In principle, one may suspect that there are
errors in the perturbation theory even at zero T. The same problem appears
in the Holstein–Primakoff formalism [3]. We refer the interested reader to the
original papers cited above as well as to the monographs [11–13] for details
concerning this problem. In principle, the spin-wave approach is less effective
for low-dimensional quantum spin systems, as quantum spin fluctuations ty-
pically increase in reduced space dimensions (D) and for small spin quantum
numbers S. Moreover, since at finite T thermal fluctuations completely de-
stroy the magnetic long-range order in 1D and 2D Heisenberg models with
isotropic short-range interactions [14], in such cases the conventional SWT
completely fails.

In view of the mentioned drawbacks of SWT, it seems surprising that
for the last decade the standard spin-wave approach has been found to give
very accurate description of the zero-temperature physics of a number of
low-dimensional spin models, the best example being the S = 1

2 Heisenberg
antiferromagnet on a square lattice [15]. Probably, another good example is
the mixed-spin Heisenberg chain describing a large class of recently synthe-
sized quasi-1D molecular magnets [16] (cf. Chap. 4). The following analysis
reveals some common features of these examples, the most important being
the weakness (in a sense) of spin-wave interactions. Fortunately, in low-space
dimensions many numerical techniques – such as the quantum Monte Carlo
method (QMC), the exact numerical diagonalization (ED), and the density-
matrix renormalization group method (DMRG) – are more effective, so that
the discussed drawbacks of the spin-wave analysis may be partially reduced
by a direct combination with numerical methods.

A goal of the present review is to summarize typical applications and some
recent developments of the spin-wave approach related to low-dimensional
quantum spin systems. The spin-wave technique is presented in the following
section, using the mixed-spin Heisenberg ladder as a working model and the
Dyson–Maleev boson formalism. Due to the asymptotic character of spin-
wave series, the calculation up to second order in the spin-wave interaction is
a reasonable approximation for most of the applications at zero T. As far as at
this level perturbative corrections can easily be calculated in the framework of
the Rayleigh–Schrödinger theory, we will not consider in detail perturbation
techniques based on magnon Green’s functions [9, 17]. Typical applications
of the spin-wave formalism in low-dimensional spin systems are presented in
Sects. 3 and 4. In particular, Sect. 3 involves an analysis of the parameters
of the quantum ferrimagnetic phase in mixed-spin quasi-1D models, such as
the (s1, s2) Heisenberg chain. The SWT results are compared with available
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DMRG and ED numerical estimates. Section 4 collects basic SWT results
concerning 2D Heisenberg antiferromagnets. Some recent modifications of the
SWT – admitting a quantitative analysis in magnetically disordered phases –
are presented in Sect. 5. Section 6 contains concluding remarks.

4.2 Dyson–Maleev Formalism

In this section we describe the formal apparatus of the SWT. We choose as
a working model the mixed-spin Heisenberg ladder (Fig. 4.1) defined by the
Hamiltonian

H =
N∑

n=1

[sn · σn+1 + σn · sn+1] + J⊥

N∑

n=1

sn · σn , (4.1)

where the index n (= 1, · · · , N) labels the rungs of the ladder, and N is an
even integer. The ladder is composed of two types of spins (sn,σn) characteri-
zed by the spin quantum numbers s1 and s2 (s1 > s2): sn

2 = �
2s1(s1+1) and

σn
2 = �

2s2(s2 +1). In the following text we use the notation rs ≡ s1/s2 > 1,
and set � = 1 and a0 = 1, a0 being the lattice spacing along the ladder.

sσ

σ

n

n+1

n+1

J

sn

a0J

Fig. 4.1. Mixed-spin Heisenberg ladder composed of two types of site spins. The
arrows show one of the classical ground states for J⊥ > 0, defined by the orientation
of the ferromagnetic moment M =

∑N
n=1(sn +σn). The intrachain coupling J = 1

It is worth noticing that the model (4.1) is not purely academic. For in-
stance, recently published experimental work on bimetallic quasi-1D molecu-
lar magnets (cf. Chap. 4) implies that the magnetic properties of these mixed-
spin compounds are basically described by the Heisenberg spin model with
antiferromagnetically coupled nearest-neighbor localized spins. The ladder
structure in Fig. 4.1 reproduces, in particular, arrangements of the Mn (s1 =
5
2 ) and the Cu (s2 = 1

2 ) magnetic atoms along the a axis in the compounds
MnCu(pbaOH)(H2O)3 (pbaOH = 2–hydroxy–1,3–propylenebisoxamato) [18].

4.2.1 Classical Reference State

The first step in constructing a spin-wave expansion is to find the lowest-
energy classical spin configurations of the related classical model. As a rule,
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this is a straightforward task, apart from some magnetic models with com-
peting interactions which may exhibit complicated non-collinear spin sta-
tes (see, e.g. [19]). Another serious problem at this stage may be related to
a macroscopic degeneracy of the classical ground state, a typical example
being the Heisenberg model on a kagomé lattice (cf. Chap. 3) which exhi-
bits a magnetically disordered ground state. Further analysis of the problem
involves quantum fluctuations and the so-called order-from-disorder pheno-
menon [20, 21].

Turning to our model (4.1), it is easy to see that the required reference
state for J⊥ > 0 is a ferrimagnetic spin configuration where the sn spins are
oriented in a given direction, and the σn spins point in the opposite direction
(see Fig. 4.1). The state is degenerate under arbitrary rotations (as a whole)
in the spin space. One may pick up a reference state by introducing a small
staggered field, say, for the sn spins. We can actually get more information
even in the quantum case, by using the Lieb–Mattis theorem for bipartite
lattices [22]. First, the theorem predicts that the quantum ground state be-
longs to a subspace with the total-spin quantum number (S1 − S2)N , i.e.
for J⊥ > 0 the system has a ferrimagnetic ground state characterized by the
ferromagnetic moment per site M0 = (s1− s2)/2. Second, the theorem states
that the energies of the ground states E(ST ) characterized by the total-spin
quantum numbers ST ≥ N(s1 − s2) are arranged as follows

E(ST + 1) > E(ST ) . (4.2)

Notice that the classical and quantum ferrimagnetic ground states have one
and the same magnetization M0, but otherwise they are different because the
classical ground state is not an eigenstate of the quantum model (4.1). The
quantum ferrimagnetic state is [2N(s1 − s2) + 1]-fold degenerate, since the
z component of the total spin – being a good quantum number – takes the
values −N(s1−s2),−N(s1−s2)+1, · · · , N(s1−s2). This quantum magnetic
phase may also be characterized by the following sublattice magnetizations

mA =
1
N

N∑

n=1

〈sn〉 mB =
1
N

N∑

n=1

〈σn〉 , (4.3)

where the symbol 〈· · · 〉means a quantum-mechanical average over the ground
state. We shall later see that quantum spin fluctuations reduce the classical
sublattice magnetizations s1 and s2, but the magnetic long-range order is
preserved, i.e. mA,mB �= 0.

In the region J⊥ < 0 the situation is different, i.e. the lowest-energy spin
configuration is the Néel antiferromagnetic state based on the composite rung
spins s1 +s2. Now the Lieb–Mattis theorem predicts that the exact quantum
ground state is a spin-singlet state, i.e. ST = 0 and M0 = 0. Therefore, it
may be generally expected a magnetically disordered phase, t.e. mA,mB = 0,
as the isotropic Heisenberg model (4.1) is defined on a bipartite 1D lattice
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(see, e.g. [23]). In terms of the SWT this would mean that the classical
antiferromagnetic state is swept out by quantum fluctuations, so that the
concept of the spin-wave expansion does not work at all.

4.2.2 Boson Hamiltonian

Now we describe the second step in constructing the spin-wave expansion,
t.e. the transformation of (4.1) to a boson Hamiltonian. The most popular
boson representation of spin operators has been suggested by Holstein and
Primakoff [3]. Other useful representations have been devised by Schwinger
[24], Maleev [10], Villain [25], and Goldhirsch [26,27].

We start by defining the Holstein–Primakoff representation for the spins
sn (n = 1, . . . , N):

s+n =
√

2s1

√

1− a†
nan

2s1
an , s

−
n =

√
2s1 a†

n

√

1− a†
nan

2s1
, sz

n =s1−a†
nan ,(4.4)

where s±
n = sx

n± sy
n and s1 is the spin quantum number. an and a†

n are anni-
hilation and creation boson operators satisfying the commutation relations

[an, a
†
m] = δnm, [an, am] = [a†

n, a
†
m] = 0 . (4.5)

Using the last equations, it is easy to show that the operators defined by
(4.4) satisfy the commutation relations for spin operators

[s+n , s
−
n ] = 2sz

n , [sz
n, s

±
n ] = ±s±

n , (4.6)

and the equation s2
n = s1(s1+1). The operators an and a†

n act in the infinite-
dimensional boson Hilbert space spanned by the orthonormal basis states

|n1, n2, . . . , nN ) =
(a†

1)
n1(a†

2)
n2 · · · (a†

N )nN

√
n1!n2! . . . nN !

|0) , (4.7)

where ni (= 0, 1, . . . ,∞) is the occupation number of site i. The reference
vacuum state |0) is defined by the relations ai|0) = 0 (for ∀ i).

It is possible to rationalize the square roots in (4.4) by the Maleev simi-
larity transformation

an �−→
(

1− a†
nan

2s1

)1/2

an , a†
n �−→ a†

n

(
1− a†

nan

2s1

)−1/2

. (4.8)

This transformation is not unitary, but preserves the number operator a†
nan

as well as the commutation relations (4.5) within the physically relevant
Hilbert space (ni ≤ 2s1 for ∀ i). Applying the last transformation to (4.4),
we get the Dyson–Maleev boson representation
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s+n =
√

2s1 (1− a†
nan/2s1) an , s−

n =
√

2s1 a†
n , sz

n = s1 − a†
nan . (4.9)

Note that the operators s±
n in this representation are not Hermitian conju-

gate in the boson space (4.7) so that in the general case they will generate
non-Hermitian Hamiltonians. Treatment of such Hamiltonians requires some
care, but it seems that – at least up to second order in the spin-wave in-
teraction – this does not cause serious problems. More problematic is the
relation between physical and unphysical states. The latter appear in the
exact Holstein–Primakoff representation as well, as any actual calculation re-
quires truncation of the asymptotic square-root series. Dyson’s method [7]
eliminates the unphysical boson states by a projection operator giving zero
on these states. In practice, however, we are enforced to eliminate this ope-
rator. As already mentioned, this is the basic approximation of SWT. As a
whole, the Dyson–Maleev formalism has many advantages if one needs to go
beyond the linear spin-wave theory (LSWT) within a perturbation scheme.
This is because the interactions between spin waves are better handled so
that the unphysical singularities caused by the long-wavelength spin waves
cancel out.

To continue, we write a representation similar to (4.9) for the spins σn,
by using a new set of boson fields (bn, n = 1, . . . , N):

σ+
n =

√
2s2 b†n (1− b†nbn/2s2) , σ−

n =
√

2s2 bn , σz
n = −s2 + b†nbn .

(4.10)

bn and b†n satisfy the same commutation relations (4.5), and are supposed to
commute with the set of a bosons. Here the reference state is chosen in the
opposite direction, in accord with the classical spin configuration in Fig. 4.1.

Using (4.9) and (4.10), we can find the boson image of any function of spin
operators. In particular, we are interested in the boson representation of the
spin Hamiltonian (4.1), which we denote by HB . For the purposes of SWT, it
is instructive to express HB in terms of the Fourier transforms ak and bk of
the boson operators an and bn, by using the unitary Fourier transformations

an =
1√
N

∑

k

eiknak , bn =
1√
N

∑

k

e−iknbk , (4.11)

and the identity
1
N

N∑

n=1

ei(k−k′)n = δkk′ .

It may be verified that this transformation is canonical, by showing that
the new operators ak and bk obey a set of commutation relations identical
to (4.5). The wave vectors k in the last expressions are defined in the first
Brillouin zone:

k =
2π
N
l , l = −N

2
+ 1,−N

2
+ 2, . . . ,

N

2
, .
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Notice that the rung spins (sn,σn) in Fig. 4.1 compose the n-th magnetic
(and lattice) elementary cell: this may be easily observed by interchanging
the site spins of every (say) even rung in Fig. 4.1.

We leave the Fourier transformation of HB as an exercise, and directly
present the result in terms of the new operators ak and bk:

HB = −2γ0rsS
2 +H0 + V

′
DM , (4.12)

where

H0 = 2S
∑

k

[
γ0

(
a†

kak + rsb
†
kbk

)
+
√
rsγk

(
a†

kb
†
k + akbk

)]
, (4.13)

V
′
DM =− 1

N

∑

1−4

δ34
12

(
2γ1−4a

†
3a2b

†
1b4+

√
rsγ1+2−4a

†
3b

†
2b

†
1b4+

1
√
rs
γ4a

†
3a2a1b4

)
.

(4.14)

Here γk = J⊥/2 + cos k (γ0 = J⊥/2 + 1), δ34
12 ≡ ∆(k1 + k2 − k3 −

k4) is the Kronecker function, and we have introduced the abbreviations
(k1, k2, k3, k4) ≡ (1, 2, 3, 4) for the wave vectors.

In a standard spin-wave expansion, 1/s1 and 1/s2 are treated as small
parameters, whereas the parameter rs may be considered as a fixed number of
order unity. In such a perturbation scheme, it is convenient to set 1/S ≡ 1/s2
and use 1/S as a small parameter. Thus, the first term in (4.12) – the classical
ground-state energy – is proportional to S2, the LSWT Hamiltonian H0 is
multiplied by S, and the spin-wave interaction term V

′
DM has the order O(1).

We shall follow a perturbation scheme where the diagonal terms of V
′
DM , i.e.

terms proportional to the occupation-number operators a†
kak and b†kbk, are

treated together with H0 as a zeroth-order Hamiltonian, whereas the rest of
V

′
DM is taken as a perturbation [9]. This is a more generic approach because

for some reasons the spin-wave interactions may be weak even in the extreme
quantum systems with 1/S = 2.

4.2.3 Quasiparticle Representation

In the next step, we diagonalize the quadratic Hamiltonian H0, by using the
Bogoliubov canonical transformation to quasiparticle boson operators (αk

and βk) [3]:

ak = uk(αk − xkβ
†
k) , bk = uk(βk − xkα

†
k) , u2

k(1− x2
k) = 1 . (4.15)

It is a simple exercise to find the transformation parameters uk and xk

from the condition which eliminates the off-diagonal terms αkβk appearing
in H0 after the transformation (4.15). The result reads
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uk =
√

1 + εk

2εk
, xk =

ηk

1 + εk
, (4.16)

where

εk =
√

1− η2
k , ηk =

2
√
rs

rs + 1
γk

γ0
. (4.17)

In some applications, the quadratic Hamiltonian H0 may include additional
ferromagnetic bilinear terms (such as a†

kbk) so that the actual diagonalization
is more involved due to the increased number of parameters (4.16). Some
diagonalization techniques for systems with large number of boson operators
are presented in [11,28].

A quasiparticle representation of the quartic terms (4.14) requires more
technical work. As mentioned above, it is instructive to pick up the quadratic
diagonal terms in V

′
DM and to treat them together with H0 as a zeroth-order

approximation. A simple way to do this is based on the presentation of V
′
DM

as a sum of normal-ordered products of boson quasiparticle operators. Apart
from a constant, the resulting expression for V

′
DM contains diagonal and

off-diagonal quadratic operator terms, and normal-ordered quartic operator
terms. We leave as an exercise this simple but somewhat cumbersome proce-
dure and give the final result for HB expressed in terms of the quasiparticle
boson operators αk and βk:

HB = E0 +HD + λV , V = V2 + VDM , λ ≡ 1 . (4.18)

Here E0 is the ground-state energy of the ferrimagnetic state calculated
up to the order O(1) in the standard 1/S expansion:

E0

N
= −2γ0rsS

2 − γ0(1 + rs)

(
1− 1

N

∑

k

εk

)
S + e1 +O

(
1
S

)
, (4.19)

where e1 = −2(c21 + c22)− J⊥(c21 + c23)− (2c2 + J⊥c3)c1(rs + 1)r−1/2
s and

c1 = −1
2

+
1

2N

∑

k

1
εk

, c2 = − 1
2N

∑

k

cos k
ηk

εk
, c3 = − 1

2N

∑

k

ηk

εk
.

(4.20)

HD is the quadratic Hamiltonian resulting from H0 and the diagonal
terms picked up from (4.14):

HD = 2S
∑

k

[
ω

(α)
k α†

kαk + ω
(β)
k β†

kβk

]
, (4.21)

where up to O (1/S) the dressed dispersions read

ω
(α,β)
k =γ0

(
rs + 1

2
εk ∓

rs − 1
2

)
+
g±

k

2S
+O

(
1
S2

)
(4.22)
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where g±
k = (gkηk − d0)ε

−1/2
k /2± (rs − 1)(2c2+c3J⊥)r−1/2

s /2, gk = 2c1(rs +
1)γkr

−1/2
s + 4c2 cos k + 2c3J⊥, d0 = 4c1γ0 + (rs + 1)(2c2 + J⊥c3)r

−1/2
s .

The functions ω
(α,β)
k without O(1/S) corrections will be referred to as

bare dispersions.
Finally, the quasiparticle interaction V includes two different terms, i.e.

the two-boson interaction

V2 =
∑

k

[
V +

k α†
kβ

†
k + V −

k αkβk

]
(4.23)

defined by the vertex functions

V ±
k =

d0ηk − gk

2εk
∓ rs − 1

√
rs

c1γk , (4.24)

and the quartic Dyson–Maleev interaction

VDM = − J

2N

∑

1−4

δ34
12

[
V

(1)
12;34α

†
1α

†
2α3α4 + 2V (2)

12;34α
†
1β2α3α4 + 2V (3)

12;34α
†
1α

†
2β

†
3α4

+ 4V (4)
12;34α

†
1α3β

†
4β2 + 2V (5)

12;34β
†
4α3β2β1 + 2V (6)

12;34β
†
4β

†
3α

†
2β1

+ V
(7)
12;34α

†
1α

†
2β

†
3β

†
4 + V

(8)
12;34β1β2α3α4 + V

(9)
12;34β

†
4β

†
3β2β1

]
, (4.25)

defined by the vertex functions V
(i)
12;34, i = 1, . . . , 9. We have adopted the

symmetric form of vertex functions used in [17]. The explicit form of V (i)
12;34

depends on the concrete model. For the ladder model (4.1), the vertex func-
tions may be obtained from those of the Heisenberg ferrimagnetic chain [29],
using the formal substitution cos k �−→ cos k + J⊥/2.

In the following we shall treat the spin-wave interaction V as a small
perturbation to the diagonal Hamiltonian E0 +HD. To restore the standard
1/S series, one should (i) use bare dispersion functions, and (ii) resume the
series in powers of 1/S.

4.3 Spin Wave Analysis of Quasi-1D Ferrimagnets

In this section we analyze the magnon spectrum and basic parameters of
the quantum ferrimagnetic phase of the model (4.1), by using the developed
spin-wave formalism and the Rayleigh–Schrödinger perturbation theory up
to second order in λ. The SWT results are compared with available DMRG
and ED numerical estimates.

4.3.1 Linear Spin Wave Approximations

In a standard linear spin-wave approximation we consider only the first two
terms in (4.12), and discard V

′
DM as a next-order term in 1/S. This corre-

sponds to the first two terms in the expression for the ground-state energy
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(4.19), and to the first term in the expression for the quasiparticle dispersi-
ons (4.22). As a matter of fact, by using the normal-ordering procedure, we
have already got even the next-order terms of the expansions in 1/S for these
quantities.

Magnon Excitation Spectrum

The quadratic Hamiltonian HD defines two branches of spin-wave excitations
(α and β magnons) described by the dispersion functions ω(α,β)

k in the first
Brillouin zone −π ≤ k ≤ π (see Fig. 4.2). The excited states α†

k|0〉 (β†
k|0〉)

belong to the subspace characterized by the quantum number Sz
T = ST − 1

(Sz
T = ST + 1), where ST = (s1 − s2)N . In the long wavelength limit k 
 1,

the energies of α magnons E(α)
k have the Landau–Lifshitz form

E
(α)
k ≡ 2Sω(α)

k =
�s

M0
k2 +O(k4) , (4.26)

where �s is the spin stiffness constant [30]. This form of the Goldstone modes
is typical for Heisenberg ferromagnets, and reflects the fact that the order
parameter, i.e. the ferromagnetic moment, is itself a constant of the motion.

0.0 0.2 0.4 0.6 0.8 1.0
kao/

0

1

2

3

4
N=12 
N=10
N=8

Ek

Ek

J =1

J =0.1

⊥

⊥
(α)

(β)

π

J =1⊥

(1,1/2)

J =0.1⊥

Fig. 4.2. Magnon excitation spectrum of the mixed-spin ladder (s1, s2) = (1, 1
2 ) for

interchain couplings J⊥ = 0.1 and J⊥ = 1. The dashed lines display the energy of
β magnons E(β)

k related to the Hamiltonian HD. The solid lines show the magnon
spectra as obtained from the second-order approximation in V . The energy of α
magnons related to (4.22) is not displayed, as it closely follows the respective solid
lines. The symbols indicate ED numerical results. The figure is taken from [31]

The spin stiffness constant �s as well as M0 play a basic role in the low-
temperature thermodynamics [32]. The parameter �s may be obtained from
the Landau–Lifshitz relation and (4.22):
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�s

2s1s2
= 1− 1

S

(
c1
rs + 1
rs

+
c2√
rs

)
+O

(
1
S2

)
. (4.27)

The function E
(α)
k exhibits an additional minimum at the zone boundary, so

that in the vicinity of π it reads

E
(α)
k = ∆(α)

π + const (π − k)2 . (4.28)

Here ∆
(α)
π is the excitation gap at the zone boundary. In the limit J⊥ → 0,

the excitation gap ∆
(α)
π (∝ J⊥) goes to zero. For ferromagnetic couplings

J⊥ < 0, the k = π mode becomes unstable and produces global instability of
the ferrimagnetic phase.

The function E
(β)
k ≡ 2Sω(β)

k may be characterized by the spectral gaps
∆

(β)
0 (at k = 0) and ∆

(β)
π (at k = π). The expression for ∆(β)

0 reads

∆
(β)
0 = 2γ0(s1 − s2)

(
1− 2c2 + c3J⊥

2Sγ0
√
rs

)
+O

(
1
S

)
. (4.29)

For the (s1, s2) = (1, 1
2 ) chain (J⊥ = 0), the last equations give the re-

sults �s/2s1s2 = 0.761 and ∆
(β)
0 = 1.676, to be compared with the results

�s/2s1s2 = 1 and ∆(β)
0 = 1 obtained in a standard linear approximation using

the Hamiltonian H0 [33, 34]. A comparison with the numerical QMC result
∆

(β)
0 = 1.759 [35] clearly demonstrates the importance of the 1/S corrections

to the dispersion functions (4.22) in the extreme quantum limit.
Summarizing, it may be stated that the linear approximation – based

on the quadratic Hamiltonian HD – gives a good qualitative description of
the magnon excitation spectrum of the model (4.1). The same conclusion is
valid for the ground-state energy: The expression (4.19) has been found to
produce an excellent fit to the numerical ED results in a large interval up to
J⊥ = 10 [31].

Sublattice Magnetizations

The on-site magnetizations mA = 〈sz
n〉 and mB = −〈σz

n〉 are parameters of
the quantum ferrimagnetic phase which keep information for the long-range
spin correlations. The simple LSWT results mA = s1 − c1 and mB = s2 − c1
show that quantum spin fluctuations reduce the classical on-site magnetizati-
ons already at the level of non-interacting spin waves. H0 produces the same
results. The ratio

s2 −mB

s2
=

c1
S

(4.30)

may be used as a measure of the zero-point motion in the quantum ground
state. Thus, there appears to be a well-defined semiclassical limit S → ∞
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where H0 is a sufficiently accurate approximation, provided c1/S 
 1. In
this connection, it seems surprising that the spin-wave series for the S = 1

2
square-lattice Heisenberg antiferromagnet produces the excellent result mA =
0.3069(2) [36] – the recent stochastic-series QMC estimate is 0.3070(3) [37] –
in spite of the fact that in this case the parameter c1/S ≈ 0.393 is not
small. Even more illuminating is the (1, 1

2 ) ferrimagnetic chain: In spite of
the large parameter c1/S ≈ 0.610, the second-order SWT gives the precise
result mA = 0.79388 [38] (DMRG estimate is mA = 0.79248 [39]). It is
difficult to explain the accuracy of SWT in terms of the standard 1/S series.
However, as will be shown below, the quasiparticle interaction V produces
numerically small corrections to the principal zeroth-order approximation.

In the mixed-spin model (4.1) there appears an important first-order cor-
rection to the sublattice magnetizations which is connected to the quadratic
interaction V2. Let us go beyond the linear approximation and calculate the
O(λ) correction to mA. The on-site magnetization mB may be obtained from
the exact relation mA = s1−s2 +mB resulting from the conservation law for
the ferromagnetic moment. The expression of mA in terms of quasiparticle
operators reads

mA = s1 − c1 −
1

2N

∑

k

[
1
εk
〈α†

kαk + β†
kβk〉 −

ηk

εk
〈α†

kα
†
k + β†

kβ
†
k〉
]
. (4.31)

Now we make use of the standard perturbation formula

〈Ô〉(1) =
∑

n �=0

〈0|V |n〉〈n|Ô|0〉
E0 − En

+
∑

n �=0

〈n|V |0〉〈0|Ô|n〉
E0 − En

(4.32)

giving the first-order correction in V of 〈Ô〉. Here Ô is an arbitrary operator
and 〈· · · 〉 means a quantum-mechanical average over the exact ground state.
The formula is also valid in the case of non-Hermitian perturbations V . In our
case, Ô is a quadratic operator, so that the sum in (4.32) is restricted to the
two-boson eigenstates |nk〉 = α†

kβ
†
k|0〉 of HD, k being a wave vector from the

first Brillouin zone. The energies of these states are Ek−E0 = 2S(ω(α)
k +ω

(β)
k ).

Finally, using the matrix elements

〈0|V2|nk〉 = V
(−)
k , 〈nk|V2|0〉 = V

(+)
k , (4.33)

we get the following result for mA calculated up to first order in V :

mA = s1 − c1 −
1

4SN

∑

k

ηk

εk

V
(+)
k + V

(−)
k

ω
(α)
k + ω

(β)
k

+O(λ2) . (4.34)

To find the standard 1/S correction to mA, we have to use in (4.34) the bare
dispersion functions.

Figure 4.3 shows the results for mA, as obtained from (4.34) by using the
bare and dressed dispersion functions (4.22). It is seen that the expansion in
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0 1 2 3
J

0.78

0.80

0.82

0.84

0.86

(1,1/2)

⊥

m
A

Fig. 4.3. On-site magnetization (sublattice A) of the (1, 1
2 ) ladder as a function of

the interchain coupling J⊥. The dashed and dashed-dotted lines display the series
results up to first order in 1/S (bare dispersions) and V (dressed dispersions). The
solid line shows the series result up to second order in V . The Lanczos ED results
for ladders with N = 12 rungs are denoted by open circles. The figure is taken
from [31]

1/S gives a small (unexpected) decrease of mA in the vicinity of J⊥ = 0, whe-
reas the expansion in V produces a correct qualitative result in this limit. The
indicated problem of the standard 1/S series probably results from enhanced
fluctuations of the individual chain magnetizations about the common quan-
tization axis. Indeed, at the special point J⊥ = 0 the classical ground state
acquires an additional degeneracy under independent rotations of the chain
ferromagnetic moments. Thus, the quartic diagonal interaction – included
in HD – seems to stabilize the common quantization axis connected to the
global ferromagnetic moment. We have an example where the expansion in
powers of V gives better results.

Antiferromagnetic Chain

It is instructive to consider the antiferromagnetic chain as a special case
(s1 = s2, J⊥ = 0) of the mixed-spin model (4.1). After some algebra, from
(4.19) and (4.22) we find the following simplified expressions for the ground-
state energy (per site)

e0 = −S2
[
1 +

1
2S

(
1− 2

π

)]2
+O

(
1
S

)
(4.35)

and the magnon spectrum

ω
(α,β)
k ≡ Ek

2S
=
[
1 +

1
2S

(
1− 2

π

)]
| sin k|+O

(
1
S2

)
(4.36)
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of the antiferromagnetic chain. For S = 1
2 , the standard LSWT gives the

result e0 = −0.4317 which is close to Hulthen’s exact result − ln 2 + 1/4 ≈
−0.443147 [40]. It is an illuminating agreement, as the theory might have been
expected to fail for magnetically disordered states. Notice, however, that the
next-order approximation, i.e. e0 = −0.4647, does not improve the SWT
result. This indicates a poor convergence of the 1/S expansion. We can also
check the series for S = 3

2 , by using the numerical result e0 = −2.82833(1) [41]
based on DMRG estimates for finite systems and the finite-size corrections
to the energy, as derived from the Wess-Zumino-Witten theory [42]. The first
two terms in the series (4.35) for S = 3

2 give the result e0 = −2.79507. In this
case, an inclusion of the next-order term in (4.35) produces the precise SWT
result e0 = −2.82808. Thus, already for S = 3

2 the spin-wave series shows a
good convergence.

Turning to the magnon spectrum (4.36), we find that for S = 1
2 SWT

qualitatively reproduces Des Cloizeaux and Pearson’s exact result for the
one-magnon triplet excitation spectrum Ek = π

2 | sin k| [43]. It is interesting
that the 1/S correction in (4.36) improves the standard LSWT result for
the spin-wave velocity (c = 1) to the value c = 1.3634: the exact result is
c = π/2 ≈ 1.5708. The magnon spectrum (4.36) is doubly degenerate and
has the relativistic form Ek = c|k| (c|π − k|) near the point k = 0 (k = π),
to be compared with the rigorous result where the spin-wave states, being
eigenstates of spin 1, are triply degenerate. Long-wavelength spin waves cor-
respond to states where all regions are locally in a Néel ground state but the
direction of the sublattice magnetization makes long-wavelength rotations.

Using (4.20) and (4.30), we find the following expression for the on-site
magnetization in the antiferromagnetic chain

m = S − c1 = S +
1
2
− 1

2N

∑

k

1
| sin k| = −∞ . (4.37)

We see that in 1D the quantum correction is divergent at small wave vectors
already in the leading LSWT approximation, no matter how large is S. This
indicates that the Néel state is destabilized by quantum fluctuations, so that
the concept of spin-wave expansion fails.

Finally, it is instructive to calculate the long-wavelength behavior of the
correlation function 〈sn ·σn+x〉. Using the Dyson–Maleev representation and
(4.15), one finds 〈sn · σn+x〉 = −S2 + 2S〈anbn+x〉 + · · · where 〈anbn+x〉 =
−(1/2N)

∑
k(cos k/|sink|) exp(ikx). Thus, in the limit x� 1 one obtains

〈sn · σn+x〉 = −S2
[
1− 1

πS
lnx+O

(
1
S2

)]
. (4.38)

This indicates that in the semiclassical limit S → ∞ the antiferromagnetic
chain is ordered at exponentially large scales ξ � a0 exp(πS) [44]. Here we
have restored the lattice spacing a0.
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4.3.2 Spin Wave Interactions

We have already discussed some effects of the quasiparticle interaction V , by
calculating the first-order correction to the sublattice magnetizations mA and
mB . Notice that O(λ) corrections to the ground-state energy (4.19) as well as
to the dispersion functions (4.22) do not appear. Indeed, it is easy to see that
the corresponding matrix elements 〈0|V |0〉 and 〈nk|V |nk〉 (|nk〉 = α†

k|0〉, or
β†

k|0〉) vanish as a result of the normal ordering of V . It will be shown below
that the O(λ2) corrections lead to further improvement of the spin-wave
results. To that end, we consider two examples, i.e. the ground-state energy
E0 and the dispersion function ω

(α)
k . The reader is referred to the original

literature for similar calculations concerning the parameters mA, �s [31], and
∆

(β)
0 [29].

The calculations may be performed within the standard perturbation for-
mula

E
(2)
i =

∑

j �=i

〈i|V |j〉〈j|V |i〉
Ei − Ej

(4.39)

giving the second-order correction in V to the eigenvalue Ei of the eigenstate
|i〉 of a non-perturbed Hamiltonian. In our case, the zeroth-order Hamiltonian
is E0 + HD, and the perturbation V is given by (4.12). The sum in (4.39)
runs over the eigenstates of HD.

Second-Order Corrections to E0

We consider corrections to the vacuum state |i〉 ≡ |0〉, so that the energy
Ei ≡ E0 is given by (4.19). There are two types of O(λ2) corrections to E0
which are connected with the interactions V2 and VDM .

First, we proceed with the quadratic interaction V2. It is easily seen that
only the states |j〉 ≡ |nk〉 = α†

kβ
†
k|0〉 produce non-zero matrix elements in

(4.39). The dominator for these two-boson states reads E0−Ek = −2S(ω(α)
k +

ω
(β)
k ), where ω(α,β)

k are defined by (4.22). Using the above results and (4.33),
we get the following correction to the ground-state energy (4.19) coming from
V2:

E
(2)
0

′

= − 1
2S

∑

k

V
(+)
k V

(−)
k

ω
(α)
k + ω

(β)
k

. (4.40)

Next, we consider the Dyson–Maleev interaction VDM . Looking at the
explicit expression of VDM (4.25), we find that only the term with the ver-
tex function V

(7)
12;34 (V (8)

12;34) does not annihilate the vacuum state |0〉 (〈0|).
Thus, the sum in (4.39) runs over the four-boson eigenstates |1234〉 =
(2!2!)−1/2α†

k1
α†

k2
β†

k3
β†

k4
|0〉. The related matrix elements read
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〈1234|VDM |0〉 = − 1
N
V

(7)
12;34δ

34
12 , 〈0|VDM |1234〉 = − 1

N
V

(8)
43;12δ

34
12 .

Using these expressions, we find the following correction to the ground-state
energy resulting from VDM :

E
(2)
0

′′

= − 1
2S

1
N2

∑

1−4

δ34
12

V
(8)
43;12V

(7)
12;34

ω
(α)
1 + ω

(α)
2 + ω

(β)
3 + ω

(β)
4

. (4.41)

Notice that the second-order correction to E0 in powers of 1/S is the sum of

E
(2)
0

′

and E
(2)
0

′′

but calculated with the bare dispersion functions.

Second-Order Corrections to ω
(α)
k

Now we are interested in perturbations to the one-magnon states |i〉 ≡ |k〉 =
α†

k|0〉. The calculations may be performed by following the method already
used for E0. Since we are treating an excited eigenstate, there appear new
types of corrections connected to the vertex functions V (2)

12;34 and V
(3)
12;34. These

terms may be predicted, e.g. by drawing the diagrams shown in Fig. 4.4.
Notice that the graphical representation of the vertex functions in Fig. 4.4 is
connected to the quasiparticle operator forms of V2 (4.23) and VDM (4.25).
The interested reader is referred to the original literature (see, e.g. [9,17,45])
where this diagram technique is explained in detail. We leave these simple
calculations as an exercise, and directly present the expression for the second-
order corrections to ω

(α)
k :

uu u

u u

u

u u u u

� � � � � � �

� � � �

� � � � � �

� �
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V
���
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d� e�

Fig. 4.4. Second-order self-energy diagrams giving the corrections to the dispersion
function ω

(α)
k . Solid and dashed lines represent, respectively, the bare propagators

for α and β magnons. The figure is taken from [29]
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δω
(α)
k = − 1

(2S)2

[
V

(+)
k V

(−)
k

ω
(α)
k + ω

(β)
k

− 2
N

∑

p

V
(+)
p V

(2)
kp;pk + V

(−)
p V

(3)
kp;pk

ω
(α)
p + ω

(β)
p

+
2
N2

∑

2−4

δ34
k2

(
V

(8)
43;2kV

(7)
k2;34

ω
(α)
k + ω

(α)
2 + ω

(β)
3 + ω

(β)
4

+
V

(3)
43;2kV

(2)
k2;34

−ω(α)
k + ω

(β)
2 + ω

(α)
3 + ω

(α)
4

)]
.

(4.42)

It is interesting to note that the vertex functions V
(−)
k , V (2)

kp;pk, V (3)
kp;pk,

V
(8)
43;2k, and V

(3)
43;2k vanish at the zone center k = 0 1, so that the gapless struc-

ture of ω(α)
k is preserved separately by each of the second-order corrections in

(4.42). Thus, we have an example demonstrating some of the good features
of the Dyson–Maleev formalism.

4.3.3 Comparison with Numerical Results

We have already presented in Figs. 2 and 3 second-order SWT results for the
dispersion functions ω

(α,β)
k and the on-site magnetization mA of the (1, 1

2 )
ladder. The comparison shows that the SWT dispersion functions closely
follow the ED data in the whole Brillouin zone. For instance, the SWT result
for the gap ∆

(β)
0 at J⊥ = 0.1 differs by less than 0.5% from the ED estimate.

Turning to mA, we find a precision higher than 0.3% in the whole interval
0 ≤ J⊥ ≤ 3. These are illuminating results, as in the considered system the
perturbation parameter 1/S = 2 is large. To understand these results, let us
consider, e.g. the λ series for the spectral gap ∆

(β)
0 of the (1, 1

2 ) chain [29]:

∆
(β)
0

2(s1 − s2)
= 1.6756λ0 + 0.1095λ2 − 0.0107λ3 +O(λ4) .

Although 1/S = 2, we see that the quasiparticle interaction V introduces
numerically small corrections to the zeroth-order approximation HD.

Finally, in Table 4.1 we have collected SWT results for different ferrima-
gnetic chains. It is interesting to note that even in the extreme quantum cases
(1, 1

2 ) and (3
2 , 1), deviations from the DMRG estimates are less than 0.03%

for the energy and 0.2% for the on-site magnetization. Moreover, it is seen
that the increase of rs = s1/s2 – keeping s2 = 1

2 fixed – leads to a rapid
improvement of the 1/S series. The above results suggest that the Heisenberg
ferrimagnetic chains and ladders are examples of low-dimensional quantum
spin systems where the spin-wave approach is an effective theoretical tool.

1 Analytical properties of the vertex functions have been studied in [46].
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Table 4.1. Spin-wave results for the parameters e0 = E0/N , mA, and ∆0 =
∆

(β)
0 /2(s1 − s2) of different (s1, s2) Heisenberg chains calculated, respectively, up

to the orders 1/S, 1/S2, and 1/S3. The SWT results are compared with available
DMRG estimates which are, respectively, denoted by ē0, m̄A [39], and ∆̄0 [47]

(s1, s2) e0 ē0 mA m̄A ∆0 ∆̄0
(
1, 1

2

)
-1.45432 -1.45408 0.79388 0.79248 1.7744 1.76

( 3
2 , 1

)
-3.86321 -3.86192 1.14617 1.14427 1.6381 1.63

( 3
2 ,

1
2

)
-1.96699 -1.96727 1.35666 1.35742 1.4217 1.42

(
2, 1

2

)
-2.47414 1.88984 1.2938 1.29

4.4 Applications to 2D Heisenberg Antiferromagnets

In this section we survey recent applications of the spin-wave approach to 2D
Heisenberg spin systems, the emphasis being on the ground-state parameters
of the square- and triangular-lattice Heisenberg antiferromagnets. We shall
skip most of the technical details, as the discussed spin-wave formalism ac-
tually does not depend on the space dimension. As already mentioned, for the
last decade SWT has been found to produce surprisingly accurate results for
the ground-state parameters of the square-lattice Heisenberg antiferromagnet
even in the extreme quantum limit S = 1

2 . Below we collect these results and
compare them with recent QMC numerical estimates. As to the triangular
antiferromagnet, it seems to be a rare example of magnetically frustrated
spin system where the spin-wave expansion is effective. In this case, we also
give some technical details concerning the spin-wave expansion, as it includes
some new issues resulting from the coplanar arrangement of classical spins.

4.4.1 Square-Lattice Antiferromagnet

The square-lattice S = 1
2 Heisenberg antiferromagnet – being a simple and

rather general model to describe the undoped copper-oxide materials – has
received a great deal of interest for the last decade. Now it is widely accepted
that the ground state of the model is characterized by antiferromagnetic
long-rage order. Thus, the role of quantum spin fluctuations is restricted
to reduction of the sublattice magnetization from its classical value 1

2 by
about 39%. 2 In a seminal work by Chakravarty, Halperin, and Nelson [48] –
using the renormalization-group approach to study the quantum non-linear
σ model in 2 + 1 space-time dimension – it has been shown that in the so-
called renormalized classical regime kBT 
 ρs the thermodynamic properties
2 Compare with the reduction of about 42% of the classical on-site magnetization

1
2 in the (1, 1

2 ) ferrimagnetic chain (see Table 1).
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of the 2D quantum Heisenberg antiferromagnet are dominated by magnon
excitations, so that the leading and next-to-leading corrections in kBT/ρs are
fully controlled by three physical parameters, i.e the spin stiffness constant
ρs,3 the spin-wave velocity c, and the on-site magnetization m, calculated
at T = 0 (see also [49]). Moreover, it has been argued that the discussed
universal thermodynamic properties appear for arbitrary kBT/ρs, provided
that 0 < ρs 
 J and kBT 
 J , J being the nearest-neighbor exchange
constant [50].

The quantities ρs, and c appear as input parameters in the quantum
non-linear σ model defined by the Lagrangian density

L =
ρs

2c2

(
∂n

∂t

)2

− ρs

2

[(
∂n

∂x

)2

+
(
∂n

∂y

)2
]
, (4.43)

where the vector staggered field n = n(t, x, y) satisfies the non-linear con-
straint n2 = 1. This model may be introduced using arguments based on
general grounds: As long as the continuous O(3) symmetry is spontaneously
broken, the symmetry of the problem requires that the interaction of the
Goldstone modes, i.e. spin waves, of the system in the long-wavelength limit
be described by this model regardless of the details of the macroscopic Ha-
miltonian and the value of the spin. For the square-lattice antiferromagnet,
close to k = (0, 0) and (π, π) the magnon spectrum takes the relativistic
forms Ek = c|k| and |π − k|, c being the spin-wave velocity. If we expand n
as (1, ε1, ε2), where the εi are small compared to unity, then the equations of
motion following from (4.43) show that there are two modes both of which
have the dispersion Ek = c|k|, as expected. If we expand the Lagrangian
to higher orders in εi, we find that there are interactions between the spin
waves whose strength is proportional to c/ρs, which is of order 1/S. We thus
see that all the parameters appearing in (4.43) can be determined by SWT.
Compared to the standard 1/S expansion, the hydrodynamic approach is
more generic in two points, i.e. (i) it is applicable to magnetically disordered
phases, and (ii) it may lead to non-perturbative results which are beyond the
reach of SWT (see, e.g. [51–53]).

Ground-state parameters of the S = 1
2 square-lattice Heisenberg anti-

ferromagnet have been studied in great detail using a variety of techniques,
including SWT, QMC, and series expansions [15]. An early QMC study by
Reger and Young [54] indicated that the SWT gives a good quantitative
description of the ground state. Series expansions around the Ising limit per-
formed by Singh [55, 56] found the results ρs ≈ 0.18J and c ≈ 1.7J , both in
good agreement with the first-order SWT [6]. Later on, higher-order calculati-
ons demonstrated that the second-order corrections in 1/S to the parameters
3 This quantity, measuring the response of the system to an infinitesimal twist of

the spins around an axis perpendicular to the direction of the broken symmetry,
should not be confused with the spin stiffness constant of the ferromagnetic state
�s connected to the Landau–Lifshitz relation (4.26).
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ρs, c and m are small – even in the extreme quantum limit S = 1
2 – and

improve the SWT results. For instance – using both the Dyson–Maleev and
Holstein–Primakoff formalisms up to second order in 1/S – Hamer et al. calcu-
lated the ground-state energy E0/N and the sublattice magnetization m [36].
Both formalisms were shown to give identical results closely approximating
previous series estimates [57]. Different scientific groups have presented con-
sistent second-order SWT results for the spin-wave velocity c [58–60], the
uniform transverse susceptibility χ⊥ [59, 61] and the spin stiffness constant
ρs

4 [59, 61]. In Table 4.2 we have collected some of these results, demon-
strating an excellent agreement with recent high-precision numerical estima-
tes [154] obtained by using the stochastic series expansion QMC method for
L× L lattices with L up to 16.

Table 4.2. Second-order SWT results for the ground-state energy per site e0 =
E0/N [36], the on-site magnetization m [36, 59], the spin-wave velocity c [59, 60],
the uniform transverse susceptibility χ⊥ [59, 61], and the spin stiffness constantρs

[59, 61] of the S = 1
2 square-lattice Heisenberg antiferromagnet. The SWT results

are compared to recent stochastic series expansion QMC estimates for L×L lattices
with L up to 16 [154]. The series results for e0, m and χ⊥ are taken from [57], and
those for ρs and c – from [61]. The figures in parentheses show the errors in the last
significant figure. � = a0 = J = 1

Quantity SWT QMC Series

−e0 0.669494(4) 0.669437(5) 0.6693(1)
m 0.3069(1) 0.3070(3) 0.307(1)
c 1.66802(3) 1.673(7) 1.655(12)
χ⊥ 0.06291(1) 0.0625(9) 0.0659(10)
ρs 0.180978 0.175(2) 0.182(5)

The accuracy of SWT may be understood in terms of the spin-wave in-
teraction V . Indeed, let us consider the 1/S series for m [36]

m = S − 0.1966019 +
0.003464

(2S)2
+O

(
1
S3

)
. (4.44)

For S = 1
2 , the related series in powers of λ simply reads m = 0.3033981λ0 +

0.003464λ2 +O(λ3), so that the spin-wave interaction V introduces numeri-
cally small corrections to the leading approximation. The same conclusion is
valid for the other parameters.

4 The reported third-order SWT result for this parameter is 0.1750(1) [61].
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4.4.2 Triangular-Lattice Antiferromagnet

The Heisenberg antiferromagnet on a triangular lattice with nearest-neighbor
exchange interactions is a typical example of a strongly frustrated spin mo-
del.5

After a long period of intensive studies – see, e.g. [64] and references
therein – it is now widely accepted that the classical coplanar ground state
survives quantum fluctuations. This state may be represented by the ansatz

sr

S
= ẑ cos(qM · r) + x̂ sin(qM · r) , (4.45)

where qM = ( 4π
3 , 0) is the wave vector of the magnetic pattern, x̂ ⊥ ẑ are

unit coordinate vectors in the spin space, and r runs on the lattice sites. As
usual, the lattice spacing a0 is set to unity. The classical spins lay in the (x, z)
plane, and point in three different directions so that the angle 2π

3 is settled
between any pair of spins in the elementary triangle (sa, sb, sc).

In performing the 1/S expansion about non-collinear reference states such
as (4.45), one faces some novelties which will be discussed in the remainder of
this section. One of them concerns the number of boson fields needed to keep
track of the whole magnon spectrum. This is an important practical issue,
as higher-order spin-wave expansions involving more than two boson fields
are, as a rule, technically intractable. In the general case, this number should
be equal to the number of spins in the magnetic elementary cell, so that for
the magnetic structure (4.45) we would need three boson fields. However, in
several special cases we can transform the non-collinear magnetic structures
into a ferromagnetic configuration by applying a uniform twist on the co-
ordinate frame. These special systems have the property that their magnon
spectrum has no gaps at the boundaries of the reduced magnetic Brillouin
zone connected to the magnetic pattern. The triangular-lattice antiferroma-
gnet fulfills this rule, so that we may describe the system by a single boson
field, as in the ferromagnetic case. In the remainder of this section we shall
follow this approach [65].

To that end, let us rotate the spin coordinate frame about the y axis by the
angle θrr′ = qM ·(r−r

′
) for any pair of neighboring spins (sr, sr′ ), in accord

to the reference state (4.45). In the local reference frame, the Heisenberg
Hamiltonian acquires the form

H =
∑

(r,r′ )

[
cos θrr′

(
sx

rs
x
r′ +sz

rs
z
r′
)
+sin θrr′

(
sz

rs
x
r′−sx

rs
z
r′
)
+sy

rs
y

r′

]
, (4.46)

where the sum runs over all pairs of nearest-neighbor sites of the triangular
lattice.

5 For a recent review on frustrated quantum magnets, see [63].
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Next, using the Holstein–Primakoff transformation (4.4)6 and the pro-
cedures described in Sect. 2, we find the following boson representation for
(4.46)

HB = −3
2
S2N + 3S

∑

k

[
Aka

†
kak +

Bk

2

(
a†

ka
†
−k + aka−k

)]
+ V , (4.47)

Ak = 1 + νk/2, Bk = −3νk/2, and νk = 1
3 [cos kx + 2 cos(kx/2) cos(

√
3ky/2)].

Here and in the remainder of this section, k takes N values from the first
Brillouin zone of the triangular lattice.

Up to quartic anharmonic terms, the expansion of the square root in
(4.46) produces the following spin-wave interaction V = V3 + V4, where

V3 = i

√
S

2
3

2
√
N

∑

1−3

(κ1 + κ2)(a
†
1a

†
2a3 − a†

3a2a1) , (4.48)

V4 = − 3
16N

∑

1−4

[
Γ

(1)
12;34a

†
1a

†
2a3a4 + Γ

(2)
123(a

†
1a

†
2a

†
3a4 + a†

4a3a2a1)
]
,(4.49)

κk = 1
3 [sin kx − 2 sin(kx/2) cos(

√
3ky/2)], Γ (1)

12;34 = 4ν1−3 + 4ν2−3 + ν1 + ν2 +

ν3 + ν4, and Γ
(2)
123 = −2(ν1 + ν2 + ν3). For simplicity, in the last expressions

we have omitted the Kronecker δ function, and have used the abbreviations
for the wave vectors introduced in Sect. 4.2.2.

A novelty here is the triple boson interaction V3 = O(S1/2), which is
typical for systems exhibiting non-collinear magnetic patterns. We shall see
below that such kind of interactions complicate the calculation of higher-order
1/S corrections.

Linear Spin Wave Approximation

In a standard LSWT, we discard V and diagonalize the quadratic part
of (4.47) by the Bogoliubov transformation ak = uk(αk − xkα

†
−k). The

parameters uk and xk are defined by (4.16) and (4.17), but in this case
ηk = −3νk/(2+ νk). The diagonalization yields the free-quasiparticle Hamil-
tonian H0 = 3S

∑
k ωkα

†
kαk, where the dispersion function

Ek ≡ 3Sωk = 3S
√

(1− νk)(1 + 2νk) (4.50)

gives the magnon energies in a LSWT approximation, to be compared with
the magnon spectrum resulting from the approach using three boson fields
[66]. It is easy to check that the dispersion function (4.50) exhibits three zero
modes, as it should be since the Hamiltonian symmetry O(3) is completely
6 The choice of the transformation is a matter of convenience, as the final results –

at least to second order in 1/S – are independent of the boson representation.
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broken by the magnetic pattern (4.45). Two of these modes are at the ordering
wave vectors k = ±qM , whereas the third zero mode at k = 0 describes soft
fluctuations of the total magnetization. Expanding about the zero modes, we
find the following expressions for the spin-wave velocities [67]

c0⊥ ≡ c±qM
=
(

3
2

)3/2

S , c0‖ ≡ ck=0 =
3
√

3
2

S . (4.51)

Let us now calculate the on-site magnetization m = 〈sz
r〉 = S − 〈a†

rar〉.
Using the Bogoliubov transformation, we find for the density of particles
〈a†

kak〉 = −1/2 + 1/(2εk), so that the LSWT result for m reads [66]

m = S +
1
2
− 1

2N

∑

k

1√
1− η2

k

= S − 0.2613 . (4.52)

For S = 1
2 , the LSWT result is m = 0.2387. Since the reported leading

1/S correction to m is small and positive7, there is a clear disagreement with
the recent QMC estimate m = 0.20(6) [69].

Spin Wave Interactions

Here we consider as an example the calculation of 1/S corrections to the
magnon spectrum (4.50). There are two different types of corrections related
to the spin-wave interactions V3 and V4 in (4.48). Turning to V4, notice that
we have already learned (Sect. 4.2.3) that the required correction may be
obtained by expressing V4 as a sum of normal products of quasiparticle ope-
rators: the diagonal quadratic terms give the required 1/S correction to the
spectrum. However, in several cases we are not interested in the quasiparticle
representation of V4. Then, it is possible to follow another way by decoupling
the quartic operator products in V4. Actually, this procedure takes into ac-
count the so-called one-loop diagrams, and may be performed within a formal
substitution of the operator products, such as a†

1a
†
2a3a4, by the following sum

over all the non-zero pair boson correlators

a†
1a

†
2a3a4 �−→

∑

pair

[
〈a†

1a
†
2〉a3a4 + a†

1a
†
2〈a3a4〉 − 〈a†

1a
†
2〉〈a3a4〉

]
. (4.53)

As suggested by the quadratic form in (4.47), there are two types of boson
correlators, i.e. 〈a†

1a2〉 and 〈a1a2〉 = 〈a†
1a

†
2〉, contributing in (4.53). The con-

stant terms in (4.53) give first-order corrections to the ground state energy,
whereas the quadratic operator products renormalize the coefficients Ak and
Bk in (4.47). Thus, the interaction V4 renormalizes the bare dispersion fun-
ction ωk to
7 We are aware of two such calculations reporting, however, somewhat different

corrections, i.e. 0.0055/S [68] and 0.00135/S [65].
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ω̄k =
√
Ā2

k − B̄2
k , (4.54)

where the new coefficients Āk and B̄k can be expressed in the form8

Āk = Ak

(
1 +

a1

2S

)
+

a2

2S
, B̄k = Bk

(
1 +

b1
2S

)
+

b2
2S

.

An analysis of (4.54) indicates that the renormalized spectrum still pre-
serves the zero mode at k = 0, but at the same time acquires non-physical
gaps at k = ±qM . The reason for such kind of behavior of the SWT is
connected with the fact that we have omitted the 1/S corrections resulting
from V3. Indeed, the spin-wave interaction V3 has the order O(S1/2), so that
a simple power counting indicates that 1/S corrections to ωk appear in the
second-order of the perturbation theory in V3. We shall skip the details of this
calculation, as it may be performed entirely in the framework of the method
presented in Sect. 4.2. Namely, one should express V3 in terms of quasipar-
ticle operators, and then apply the general perturbation formula (4.32) for
the interaction V3, by using the dressed dispersions (4.54). As a matter of
fact, as we are interested in corrections up to 1/S, we can use the bare di-
spersion function (4.50). The final result of this calculation shows that the
1/S correction resulting from V3 exactly vanishes the gap (produced by V4),
so that the structure of magnon spectrum (4.50) – containing three zero mo-
des – is preserved in the leading first-order approximation [70]. Based on the
renormalized dispersion, the following expressions for the spin-wave velocities
(4.51) have been reported [65]:

c‖ = c0‖

(
1− 0.115

2S

)
, c⊥ = c0⊥

(
1 +

0.083
2S

)
.

Notice that the 1/S corrections diminish the ratio c‖/c⊥ from the LSWT
result 1.41 to the value 1.16. These expressions indicate that the leading
corrections to the magnon spectrum are numerically small even in the case
S = 1

2 . Good convergence has been found also for the 1/S series of the
magnetic susceptibilities χ⊥ and χ‖ [71, 72] which appear as parameters of
the magnetic susceptibility tensor [73]

χαβ = χ⊥δαβ + (χ‖ − χ⊥)yα)yβ .

Here ŷ is a unit vector directed perpendicular to the basal (x, z) plane of the
planar magnetic structure.

Summarizing, the available SWT results point towards a good conver-
gence of the perturbative spin-wave series in the triangular-lattice Heisenberg
antiferromagnet. This is remarkable, as the spin-wave expansion might have
been expected to fail for strongly frustrated magnetic systems.
8 For brevity, here we omit the expressions for the constants a1, a2, b1, and b2 [65].
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4.5 Modified Spin Wave Theories

Here we consider some modifications of the standard spin-wave theory allo-
wing for an analysis of magnetically disordered phases. These may appear
either as a result of quantum fluctuations – a classical example being the
spin-S Heisenberg antiferromagnetic chain discussed in Sect. 4.3.1 – or due to
thermal fluctuations, as in 1D and 2D Heisenberg magnets with short-range
isotropic interactions [14]. For the antiferromagnetic chain, we have indicated
that the failure of SWT arises already in the linear spin-wave approximation
as a divergency in the boson-occupation numbers ni = 〈a†

iai〉 = ∞ implying
〈sz

i 〉 = −∞ . Infinite number of spin waves also appears at T > 0, when the
T = 0 magnetic phases of low-dimensional Heisenberg systems do not survive
thermal fluctuations. Actually, the occupation numbers ni should not exceed
2S – as dictated by the spin algebra – and the magnetization should be zero,
as required by the symmetry of the phases. In the remainder of this section
we discuss modifications of the SWT based on ad hoc constraints imposing
fixed number of bosons.

The first generalized spin-wave theory of this kind has been formulated
by Takahashi to study the low-T thermodynamics of 1D and 2D Heisenberg
ferromagnets [74,75]. Takahashi’s idea was to supplement the standard SWT
of Heisenberg ferromagnets with the constraint imposing zero ferromagnetic
moment at T > 0:

M =
N∑

n=1

〈sz
n〉 = SN −

∑

k

〈a†
kak〉 = 0 . (4.55)

Depending on the context, in the remainder of this section 〈A〉 means the ex-
pectation value of the operator A at T = 0 or T > 0. Quite surprisingly, it was
found an excellent agreement with the Bethe-ansatz low-temperature expan-
sions of the free energy and magnetic susceptibility for the S = 1

2 Heisenberg
ferromagnetic chain. Similar extensions of SWT have been suggested for Hei-
senberg antiferromagnets both at T = 0 [76,77] and at T > 0 [78,79], by using
the same constraint equation (4.55) but for the sublattice magnetization. Be-
low we discuss some applications of the modified SWT to low-dimensional
Heisenberg antiferromagnets both at T = 0 and at finite temperatures.

4.5.1 Square-Lattice Antiferromagnet at Finite T

Using the Dyson–Maleev transformations (4.9) and (4.10), the boson Hamil-
tonian H′

B of the square-lattice antiferromagnet reads

H′
B =−N

2
JzS2+

∑

k

[
Ak(a†

kak+b†kbk)+Bk(a†
kb

†
k+akbk)

]
+V

′
DM , (4.56)

whereas the constraint equation for the total sublattice magnetization takes
the form
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∑

k

〈a†
kak + b†kbk〉 = SN . (4.57)

The wave vector k runs in the small (magnetic) Brillouin zone |kx ± ky| ≤ π
containing N/2 points. Ak = JSz, Bk = JSzγk, γk = 1

2 (cos kx +cos ky), and
z = 4 is the lattice coordination number.

In essence, the constraint equation (4.57) introduces an effective cut-off for
unphysical states [80]. To see this, let us consider the S = 1

2 system. According
to (4.57), the average number of, say, the α magnons is N/4, whereas the total
number of one-magnon states in the magnetic Brillouin zone is N/2. Thus,
after introducing the constraint (4.57), the effective number of allowed states
in the boson Hilbert space is

[
(N/2)!

(N/4)!(N/4)!

]2
∼ 4

π

2N

N
,

so that with logarithmic accuracy the correct dimension 2N is restored.
To implement the constraint equation in the theory, we introduce, as

usual, a chemical potential µ for the boson fields, i.e. instead of H′
B we

consider the Hamiltonian

HB = H′
B − µ

∑

k

(a†
kak + b†kbk) , (4.58)

where µ is fixed by the constraint equation (4.57). Notice that the introduc-
tion of a chemical potential simply renormalizes the coefficient Ak → Ak−µ
so that we can apply the formalism from Sect. 4.2 without any changes.

Using the Bogoliubov transformation (4.15) with the parameter ηk =
JzSγk/(JzS−µ), one finds the following quasiparticle representation of HB

(see, e.g. [17])

HB = E0 +HD + VDM , (4.59)

where E0 is the ground-state energy calculated up to first-order of the per-
turbation theory in 1/S:

E0 = −N
2
zJS2

(
1 +

r

2S

)2
, r = 1− 2

N

∑

k

√
1− η2

k . (4.60)

As we know from Sect. 4.2.3, the free-quasiparticle Hamiltonian

HD =
∑

k

Ek(α†
kαk + β†

kβk) (4.61)

includes the diagonal quadratic terms resulting from V
′
DM , so that the ma-

gnon energies Ek are calculated up to first-order corrections in 1/S:

Ek = JzS
(
1 +

r

2S

)√
1− η2

k . (4.62)
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Here the factor r/2S is Oguchi’s correction to the magnon spectrum [6].
We want to treat the spin-wave interaction up to first order in the 1/S

perturbation theory, so that the Dyson–Maleev interaction VDM will be dis-
carded. It is important to notice that here the off-diagonal quadratic interac-
tion V2 does not appear, as dictated by the sublattice interchange symmetry.
This means that the lowest-order corrections to the sublattice magnetization
m have the order O(S−2), see the series (4.44), so that the constraint equa-
tion (4.57) calculated in a LSWT approximation can be safety used at this
level.

Turning to the magnon spectrum (4.62), we see that the chemical poten-
tial introduces a spectral gap ∆ so that close to the zone center the excitation
spectrum acquires the relativistic form

Ek =
√
∆2 + c2k2 , c =

JzS√
2

(
1 +

r

2S

)
, (4.63)

where ∆ = 2c(−µ/JzS)1/2 and c is the spin-wave velocity calculated up
to first order in 1/S. Using the standard expression for free bosons nk =
〈α†

kαk〉 = 〈β†
kβk〉 = [exp(−Ek/kBT ) − 1]−1, the constraint equation (4.57)

takes the form

S +
1
2

=
1
N

∑

k

1√
1− η2

k

coth
Ek

kBT
. (4.64)

At low T , the main contributions in the last sum come from small wave
vectors so that, using (4.63), the gap equation (4.64) yields

∆ =
c

ξ
= 2Tarcsinh

[
1
2

exp
(
−2πρs

kBT

)]
. (4.65)

Here ρs is the T = 0 spin stiffness constant calculated up to first order in
1/S, and ξ is the spin correlation length. This result exactly reproduces the
saddle-point equation in the 1/N expansion of the O(N) nonlinear σ model
in 2 + 1 space-time dimensions (see, e.g. [81]). It is well known that (4.65)
describes three different regimes, i.e. (i) the renormalized classical, (ii) the
quantum critical, and (iii) the quantum disordered regimes [53].

As an example, we consider the renormalized classical regime defined by
the condition kBT 
 ρs. In this case, the last equation yields the following
result for the correlation length

ξ ∼ c

T
exp

(
2πρs

kBT

)
. (4.66)

This coincides with the one-loop approximation of the 2 + 1 nonlinear σ
model [48]. As is well known, at a two-loop level the T dependence in the
pre-exponential factor disappears, whereas the exponent argument does not
change.
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Finally, let us calculate the leading temperature correction to the internal
energy U = 〈HB〉. The expression for U reads

U = E0 +
∑

k

Ek

(
coth

Ek

kBT
− 1
)
. (4.67)

Using (4.63), after some algebra one finds the following result:

U = E0 +
2ζ(3)N
πc2

T 3 . (4.68)

Here ζ(x) is the Riemann zeta function. The above temperature correction
describes the contribution from two zero modes, i.e. k = (0, 0) and k =
(π, π), and reproduces the expected universal behavior known from the 2+1
nonlinear σ model and the chiral perturbation theory [49,82].

4.5.2 Applications to Finite-Size Systems

The modified SWT can also be applied to finite-size systems [76, 77]. This
opens an opportunity directly to compare SWT results with finite-size nume-
rical data. As is known, the standard SWT is not applicable to finite systems
due to divergences related to the Goldstone zero modes. Actually, the diver-
gency comes from the Bogoliubov transformation (4.15) which is not defined
for these modes.

Turning to the example from Sect. 4.5.1, notice that in the infinite system
the chemical potential µ goes to zero as T → 0. At T = 0 the constraint
equation takes the form

S +
1
2
− 2
N
√

1− η2
0

− 1
N

∑

k �=0

1√
1− η2

k

= 0 . (4.69)

Here we have selected the contribution from the two zero modes at k = (0, 0)
having Sz = ±1.

According to (4.69), on a finite lattice the parameter η0 = JzS/(JzS−µ)
is less than unity, so that the divergences associated with the zero modes
disappear. The constraint (4.69) takes into account the fact that in finite
systems there are no spontaneously broken continuous symmetries.

To find the staggered magnetization m appearing in the thermodynamic
limit of the 2D system, we calculate the antiferromagnetic structure factor
S(π, π) for large N :

m2(N) =
2
N
S(π, π) =

4
(1− η2

0)N2 +
1
N2

∑

k �=0

1 + η2
k

1− η2
k

, (4.70)

where we have again selected the contribution from the zero modes.



4 Spin Wave Analysis of Heisenberg Magnets in Restricted Geometries 223

In the large-N limit, the last sum transforms into an integral which is
∝ lnN , so that the main contribution comes from the first term in (4.70).
Thus, we find the relation

m2 = lim
N→∞

4
(1− η2

0)N2 . (4.71)

Equation (4.69) induces a gap in the magnon spectrum which is defined
by ∆ = c

√
2(1− η2

0). Using (4.71) and the notations from Sect. 4.5.1, we find
the following result for the magnon excitation gap in the large-N limit

∆ =
c2

ρsL2 . (4.72)

L = N1/2 is the linear size in a square geometry. The last expression repro-
duces the result for ∆ obtained by other methods [49,83,84].

Finally, let us return to the Heisenberg antiferromagnetic chain discussed
in Sect. 4.3.1, this time using the modified SWT [79]. We have seen that in 1D
the expression for the staggered magnetization (4.37) contained an infrared
divergency indicating that the magnetic order is destabilized by quantum
fluctuations. Using the concept of the modified theory, we can resolve the
problem by replacing (4.37) with the constraint equation

S +
1
2

=
1
N

∑

k

1√
1− η2

0 cos2 k
=

K(η0)
π

, (4.73)

where K(η0) is the complete elliptic integral of the first kind.
Since K(η0) ≥ π/2, the gap equation (4.73) has a solution for arbitrary S.

However, the constraint introduces an excitation gap, so that the discussed
theory makes sense only for integer S. To find the gap, we may use for
small (1 − η2

0)1/2 the asymptotic result K(η0) = ln 4(1 − η2
0)−1/2, so that

the excitation gap reads

∆ ∼ c exp (−πS) . (4.74)

Here c is the spin-wave velocity of the antiferromagnetic chain (4.36). The
obtained gap has the asymptotic form ∆ ∼ S exp(−πS), to be compared
with Haldane’s result ∆ ∼ S2 exp(−πS) obtained from the σ-model mapping
[85,86]. It is remarkable that the simple modified SWT is capble to reproduce
the asymptotic expression for the Haldane gap.

4.6 Concluding Remarks

We have surveyed the spin-wave technique and its typical applications to
Heisenberg magnetic systems in restricted geometries. In most of the cases
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the SWT results were compared with the available numerical estimates. As
a result, the systematic large-S technique has been found to give very accu-
rate description of the zero-temperature parameters and magnon excitation
spectra of a number of low-dimensional quantum spin models, such as the
Heisenberg antiferromagnet on square and triangular lattices and various
quasi-one-dimensional mixed-spin Heisenberg systems exhibiting ferrimagne-
tic ground states. Presented analysis of the asymptotic series up to second
order in the parameter 1/S implies that in these systems the spin-wave inter-
action introduces numerically small corrections to the principal approxima-
tion, even in the extreme quantum limit S = 1

2 . Thus, indicated effectiveness
of the spin-wave technique – as applied to magnetic systems with small spin
quantum numbers and in restricted geometries – may be attributed to the
observed weakness of spin-wave interactions.

The authors thank J. Richter and U. Schollwöck for their collaborati-
ons in this field, and S. Sachdev, A.W. Sandvik, and Z. Weihong for the
permission to use their results. This work was supported by the Deutsche
Forschungsgemeinschaft.
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Abstract. Low dimensional spin- 1
2 systems with antiferromagnetic interactions

display very innovative features, driven by strong quantum fluctuations. In parti-
cular, geometrical effects or competing magnetic interactions can give rise to the
formation of a spin gap between the singlet ground state and the first excited triplet
state. In this chapter, we focus on the numerical investigation of such systems by
Exact Diagonalisation methods and some extensions of it including a simultaneous
mean-field treatment of some perturbative couplings. After a presentation of the
Lanczos algorithm and a description of the space group symmetries, we give a short
review on some pure low-dimensionnal frustrated spin gapped systems. In particu-
lar, we outline the role of the magnetic frustration in the formation of disordered
phase. A large part is also devoted to frustrated Spin-Peierls systems for which
the role of interchain couplings as well as impurity doping effects has been studied
numerically.

5.1 Introduction

Many systems of Condensed Matter consist of fermions (electrons) moving
on a lattice and experiencing strong repulsive interactions [1]. In such cases,
the traditional perturbative methods to treat the electronic correlations often
break down. In a pioneering work, Bonner and Fisher [2] revealed the exact
diagonalisation (ED) method as a powerful tool to study the properties of
one dimensional (1D) spin chains. Later on, it was extended to investigate
two dimensional (2D) localised spin systems [3]. This work initiated a more
extensive use of the method to investigate a wide variety of different systems
such as strongly correlated lattice electrons (Hubbard-like models), mesosco-
pic systems [4], electron-phonon models, etc....

The success of this method first comes from the rapidly growing power of
supercomputers which are being equipped with faster and faster processors
and larger and larger memories, disk space and storage facilities. In addition,
ED are clearly unbiased methods as we shall discuss later on in the course of
this Chapter. The systematic errors can be, in most cases, easily estimated
and, hence, this method is a very controlled one. Of course, it has its limi-
tations (which we shall also discuss later) but, clearly, the efficiency of this
technique will steadily increase in the future as the power of supercomputers
booms up.

N. Laflorencie and D. Poilblanc, Simulations of Pure and Doped Low-Dimensional Spin-1/2
Gapped Systems, Lect. Notes Phys. 645, 227–252 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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The following Chapter will be dedicated mostly to the numerical technique
based on the Lanczos algorithm. However, we shall focus on a specific area of
strongly correlated models, namely low-dimensional spin-1

2 gapped systems,
to illustrate various technical aspects of the method and to discuss the physics
of these topics. References to related specialised work dealing in more details
with the physical aspects will also be given.

Low dimensional spin-1
2 systems with antiferromagnetic (AF) interactions

display very innovative features, driven by strong quantum fluctuations. In
particular, geometrical effects or competing magnetic interactions can give
rise to the formation of a spin gap between the singlet ground state and
the first excited triplet state. In this chapter, we focus on the numerical
investigation of such systems by Exact Diagonalisation (ED) methods and
some extensions of it including a simultaneous mean-field (MF) treatment of
some perturbative couplings.

This chapter is organised as follows: in Sect. 2 a description of the Lanczos
algorithm is given with special emphasis on the practical use of space group
symmetries. A very short review on the well-known planar frustrated Heisen-
berg model and some linear chain Heisenberg models is given in Sect. 3. In
particular, we outline the role of the magnetic frustration in the formation
of a disordered phase. We also introduce a MF treatment of interchain cou-
plings. Section 4 is devoted to more recent studies of impurity doping and to
the derivation of effective models describing interaction between dopants.

5.2 Lanczos Algorithm

5.2.1 Algorithm

The exact diagonalisation method is based on the Lanczos algorithm [5] which
we shall describe here. This algorithm is particularly suited to handle sparse
matrices and there is, in fact, a wide variety of lattice models belonging to
this class as we shall see later on [6].

Let us consider some lattice model corresponding to some Hamiltonian H
with its symmetry group G = {g}, namely [H, g] = 0. Let us also assume, for
the moment, that irreducible representations of the symmetry group can be
constructed. They consist of complete subsets of states Al = {|α〉} which are
globally invariant under the application of the Hamiltonian H (we postpone
to the next part of this section the explicit construction of these states).
Clearly, H can be diagonalized in each of the subsets Al independently. It
can be written as a tridiagonal matrix in a new orthonormal basis set {|Φm〉}
defined as [7]

H|Φ1〉 = e1|Φ1〉+ b2|Φ2〉,
... (5.1)

H|Φn〉 = en|Φn〉+ bn+1|Φn+1〉+ bn|Φn−1〉 ,
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where the various coefficients and new basis states can be calculated recur-
sively. The proof is as follows: let us suppose that the procedure has been
applied until the step n, i.e. an orthonormal set of states |Φ1〉, ..., |Φn〉 has
been constructed. Assuming the knowledge of e1, ..., en−1, b2, ..., bn, |Φn−1〉
and |Φn〉, one can then determine

en = 〈Φn|H|Φn〉. (5.2)

Hence, the new state defined by

|φn+1〉 = H|Φn〉 − en|Φn〉 − bn|Φn−1〉, (5.3)

is clearly orthogonal to |Φn〉. Moreover, 〈Φn−1|φn+1〉 = 〈Φn−1|H|Φn〉 − bn
which is also vanishing as can be seen by substituting the expression for
H|Φn−1〉. More generally, |φn+1〉 is, in fact, orthogonal to all the previous
states |Φp〉, p ≤ n as can be shown recursively. Indeed, let us assume that,
for p < n,

∀i, p ≤ i ≤ n 〈Φi|φn+1〉 = 0, (5.4)

then 〈Φp−1|φn+1〉 = 〈Φp−1|H|Φn〉 where 〈Φp−1|Φn〉 = 〈Φp−1|Φn−1〉 = 0 has
been used. Substituting the expression given by (5.2) for H|Φp−1〉 leads to
the expected result

〈Φp−1|φn+1〉 = 0. (5.5)

The (positive) number bn+1 is simply defined as a normalisation factor,

b2n+1 = 〈φn+1|φn+1〉, (5.6)

i.e. |Φn+1〉 = 1
bn+1

|φn+1〉.
In principal, a zero vector will be generated after iterating the Hamilto-

nian a number of times corresponding to the size Nl of the Hilbert space.
However, the number of iterations necessary to obtain the lowest eigenva-
lues and eigenvectors is much smaller. Typically, for Nl ∼ 106, the ground
state can be obtained with an accuracy better than 10−8, by truncating the
procedure after only Nit ∼ 100 iterations and by diagonalizing the resulting
tri-diagonal matrix by using a standard library subroutine. However, for a
given size Nl of the Hilbert space, the necessary number Nit of iterations
might vary by a factor of 2 or 3 depending on the model Hamiltonian. In
practice, the convergence is faster for models for which high energy confi-
gurations have been integrated out (e.g. t–J models in contrast to Hubbard
models). Note however that, in some cases (models with strong finite range
interaction), the energy vs Nit curve can exhibit steps before convergence to
the true ground state is achieved. Once space group symmetries have been
implemented, the best choice for the initial state |Φ1〉 is a purely random
vector. The ground state is also easily obtained as a function of the states
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|Φn〉. However, to express it in terms of the initial basis {|α〉} (as it is often
useful) it becomes necessary to store temporarily the intermediate vectors
|Φn〉. This step is usually the most demanding in terms of disk space and/or
mass storage. However, note that, at runtime, only three Lanczos vectors of
size Nl need to be assigned in memory.
Full diagonalisation: In some special cases (spectrum statistics [8], thermo-
dynamics [9], etc ...) the complete spectrum (or a least the lower part of
it) is needed. This can also be performed by the Lanczos algorithm. In this
case, usage of a more sophisticated standard library package (e.g. EA15 of
Harwell) is preferable. Indeed, more involved tests become then necessary to
eliminate the unphysical “ghost” levels appearing (always above the ground
state energy) after the diagonalisation of the tridiagonal matrix. However,
the input for the library subroutine consists only on the set of states |Φn〉
which have to be calculated separately (see below).

5.2.2 Space Group Symmetries

Usually, some efforts have to be carried out in order to take full advantage
of the symmetries of the Hamiltonian. Let us consider a model defined on
a D-dimensional lattice describing interacting fermions as e.g. the simple
Heisenberg (spin) model,

HJ =
∑

x,y
Jxy Sx · Sy, (5.7)

where interaction (in this case the exchange coupling) is not necessarily re-
stricted to nearest neighbor (NN) sites but, nevertheless, is supposed to exhi-
bit translation and point group symmetry. In other words, denoting the point
group [10] by GP = {gP }, we assume, e.g. in the case of (5.7),

Jxy = J(x− y)
and (5.8)

∀gP ∈ GP , J(gP (r)) = J(r).

Clearly, such properties are easily generalised to generic spin or fermionic
Hamiltonians. In addition, we shall also assume, as in (5.7), spin rotational
invariance (the total spin S is a good quantum number) or, at least, inva-
riance of the Hamiltonian under a spin rotation around some quantisation
axis. Translation symmetry can be preserved on finite systems provided the
geometry is that of a D-dimensional torus with periodic or twisted boundary
conditions (BC). On the torus geometry, the full space group reads,

G = GP ⊗ T , (5.9)

where we denote by T = {tp}, p = 1, ..., N , the translation group. It is clear
that HJ is invariant under any g ∈ G.
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J1

J1

J2

J2

J + δ
J − δ

(a) (b) (c)

Fig. 5.1. Schematic representation of of different lattices. (a) the
√

32×√
32 square

lattice with NN and second NN couplings J1 and J2. (b) the dimerized ring with
dimerization δ. (c) The frustrated ring with NN and second NN couplings J1 and J2

5.2.3 Construction of the Hilbert Space

The motivation to take into account the Hamiltonian symmetries is two-fold.
First, the Hamiltonian can be block diagonalized, each block corresponding to
an irreducible representation of the symmetry group. Practically, the sizes of
the various blocks Nl are much smaller than the size of the full Hilbert space
(see e.g. Table 5.1), hence, minimising the numerical effort to diagonalize the
Hamiltonian matrix. Secondly, each irreducible representation of the symme-
try group is characterised by quantum numbers (such as the momentum k)
which can be connected directly to physical properties.

Table 5.1. Symmetry groups and sizes of the reduced Hilbert spaces for various
spin- 1

2 AF Heisenberg models for one of the most symmetric irreducible represen-
tation (typical reduced size is written as the total size in the Sz = 0 sector divided
by the number of symmetries). The 1D models are descibed in Sect. 5.3.2. TN and
I2 stand for the translation group T (see text) and the spin inversion symmetry
SZ

x → −SZ
x , respectively

Model Lattice Size Symmetry group Typical reduced Hilbert space size

2D Isotropic 6 × 6 T36 ⊗ C4v ⊗ I2 9 075 135 300/576
1D J1 − J2 32 × 1 T32 ⊗ C2 ⊗ I2 601 080 390/128
1D J1 − J2 − δ 32 × 1 T16 ⊗ I2 601 080 390/32

We shall focus here on the Heisenberg model (5.7) but t–J and Hubbard
models can also be studied. In order to minimise memory occupation, con-
figurations can be stored in binary form. One, first, assumes an arbitrary
labelling of the lattice sites from 1 to L and denotes a configuration in real
space by

|c〉 = |s1, ..., si, ..., sL〉 . (5.10)

For the Heisenberg model, the information si on each lattice site xi can be
stored on a single bit, e.g. ↑ and ↓ correspond to 1 and 0 respectively. A
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spin configuration with up to 64 spins can then be represented by a single
64-bit word. As an example, a N = 4 site configuration Heisenberg model
such as | ↑, ↓, ↑, ↓〉 is coded as 064...0514031201 (where the subscripts indicate
the place of the bits) i.e. the integer “10”. An integer N(|c〉) can then be
uniquely associated to each configuration |c〉 and formally written as,

N(|c〉) =
N∑

1

2i−1σi , (5.11)

for spin-1/2 models (σi = 0, or 1).
At this point, it becomes useful to consider space group symmetry. Each

irreducible representation can be characterised by a momentum

K =
∑

µ

nµKµ , (5.12)

where Kµ are the reciprocal lattice vectors (e.g., in 2D, Kµ = 2π
N Tµ ∧ ez)

and nµ are integers. For each value of K, one then considers GP
K, the so-called

little group of K (GP
K ⊂ GP ), containing group elements gP such that

gP (K) = K . (5.13)

The relevant subgroup of G to be considered is then

GK = GP
K ⊗ T . (5.14)

For a given symmetry sector l = (K, τK) (τK is one of the irreducible repre-
sentations of GP

K) a “symmetric” state |α〉 can then be constructed from a
single configuration |c〉 as a linear combination which reads, up to a norma-
lisation factor,

|α〉 ≡ |α〉{|c〉} =
∑

gP ∈GP
K,t∈T

e(τK, gP ) exp (iK ·Tt) (gP t)(|c〉), (5.15)

where e(τK, gP ) are the characters (tabulated) of the representation τK and
Tt are the translation vectors associated to the translations t. Since the
procedure to construct the symmetric state is well defined, it is clear that
one needs to keep only a single one of the related configurations gP t(|c〉), this
state being called “representative” of the symmetric state |α〉 and denoted
by |r〉 = R(|c〉). This naturally implies,

∀g ∈ GK, R(g(|c〉)) = |r〉 . (5.16)

In other words, one retains only the configurations |c〉 which can not be
related to each other by any space symmetry g ∈ GK. The set of all the re-
presentatives (labelled from 1 to Nl) defines then unambiguously the Hilbert
space Al = {|α〉}. Typically, the size of this symmetric subspace is reduced
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by a factor of card(GK) compared to the size of the original basis |c〉. Note
that, in some cases, there might exist some configurations |c〉 (to be elimina-
ted) which do not give rise to any representative. This occurs when there is
a subset G′ ⊂ GK such that

∀g ∈ G′, g(|c〉) = |c〉
and (5.17)

∑

g∈G′
e(τK, gP (g)) exp (iK ·T(g)) = 0 .

The choice of the representative among the set of equivalent states (i.e.
states related by some symmetry operations of GK) is, in principle, arbitrary.
However, as we shall see in the following, it is convenient to define it as the
state |c〉 of a given class giving rise to the smallest integer N(|c〉) i.e.

N(|r〉) = min
g∈GK

{N(g(|c〉))} (5.18)

For simplicity, we shall here extend our coding procedure to more general
Hubbard-like models where one can construct the configurations by a tenso-
rial product of the up and down spin parts

|c〉 = |c(↑)〉 ⊗ |c(↓)〉 . (5.19)

N(|c〉) contains now 2N bits and is of the form

N(|c〉) = N ′(|c(↑)〉)× 2N +N ′(|c(↓)〉) , (5.20)

where N ′(|c(σ)〉) corresponds to the binary coding (N ′(|c(σ)〉) < 2N )) of the
σ-spin part of the configuration, by using (5.11) where 1 (resp. 0) refers now
to the presence (resp. absence) of a spin σ(=↑ or↓) at a given site i. Although
this coding is more costly in term of memory space (2N bits per configuration
instead of N), it is more general and applies both to Hubbard-like models
(where ↑ and ↓ spins can leave on the same site) and to Heisenberg models.
The minimisation of N(g(|c〉)) over g ∈ GK can be done in two steps. First,
one generates all possible configurations for the up spins (this usually involves
a limited number of states) and only representatives |r(↑)〉 are kept. At this
stage, one needs to keep track of the subsets of symmetries EK[r(↑)〉] of GK

leaving these representatives invariant. In a second step, one constructs the
full set of configurations as a tensorial product of the form |r(↑)〉 ⊗ |c(↓)〉.
The remaining symmetries of EK[|r(↑)〉] are then applied to the spin ↓ part
and one only retains the configurations |c(↓)〉 such that,

∀g′ ∈ EK[r(↑)〉] N ′(|c(↓)〉) ≤ N ′[g′(|c(↓)〉)] . (5.21)

The Hilbert space is then formally defined by all the symmetric states |α〉{|r〉}
(see (5.15)). However, one only needs to store the binary codes N(|r〉) as well
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as the normalisations of the related symmetric states. The normalisation of
(5.15) requires some caution. In some cases, there might exist more than a
single (i.e the identity operator I) group element g′ of EK[|r(↑)〉] which keeps
|r〉 invariant. Then,

FK[|r〉] = {g′ ∈ EK(|r(↑)〉);N ′[g′(|c(↓)〉)] = N ′(|c(↓)〉)} (5.22)

defines the subgroup of such symmetry operations. The sum over the group
elements in (5.15) should, in fact, be restricted to the elements of the coset
GK/FK[|r〉] and the appropriate normalisation factor is then given by

n(|r〉) = [
card{FK[|r〉]}

card{GK}
]1/2 . (5.23)

The two integers N(|r〉) and n(|r〉) corresponding to the binary code of a
representative and to the normalisation of the related symmetric state, res-
pectively, can be combined and stored in a single 64-bit computer word.

In the case of the generic Heisenberg model, the previous two-step pro-
cedure can, in most cases, also be done using the N bits coding from (5.11)
but it is more involved. We only indicate here the spirit of the method. More
technical details for spin-1/2 models can be found in Refs. [11] and [12]. The
decomposition between up and down spins is replaced here by an (appro-
priate) partition of the lattice sites into two subsets A and B. The computer
word (integer) (5.11) coding each configuration contains then two parts, each
part corresponding to one subset of the lattice sites, |c(A)〉 and |c(B)〉. The
partition is chosen in a way such that the group GK can be decomposed as

GK = GS
K + S(GS

K) , (5.24)

where S is a group symmetry which fulfils S2 = I, the subgroup GS
K leaves

the two subsets of lattice sites globally invariant and S(GS
K) is the coset of

S relative to GS
K. The decomposition (5.24) is not always unique. For 2D

clusters such as the
√

32×
√

32 lattice of Fig. 5.1, a convenient choice for S
is a reflection symmetry. Note that, in the case of 1D rings, (5.24) is only
possible if the number of sites is of the form N = 4p + 2 or for very special
values of the momentum K (like K = 0 or K = π). Then, the previous
procedure can be extended to this case by writing the configurations as

|c〉 = |c(A)〉 ⊗ |c(B)〉 (5.25)

and by (i) applying the subgroup GS
K on |c(A)〉 to generate its corresponding

representative |r(A)〉 and then (ii) applying all the symmetries of EK[|r(A)〉]
on the part |c(B)〉. The action of the remaining symmetry S is considered at
last; if the lattice sites are labelled in such a way that

xi+N/2 = S(xi) , (5.26)

for i ≤ N/2, the application of S can be implemented as a simple permutation
of the two sub-words of N(|c〉).
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5.2.4 Construction of the Hamiltonian Matrix

We turn now to the implementation of the basic operation |Φn〉 → H|Φn〉
appearing in (5.2) which is always specific to the model Hamiltonian H and
constitutes the central part of the Lanczos code. Since the states |Φn〉 are
expressed in terms of the symmetric states |α〉 of (5.15) the Hamiltonian
matrix has to be computed in this basis. For this purpose, it is only necessary
to apply H on the set of representatives |rγ〉 (labelled from 1 to Nl). In
general, each configuration |r〉 leads to a small number βmax (at most equal
to the number of terms in H) of generated states,

H|rγ〉 ∝
βmax∑

β=1

(−1)θγ,β |cγ,β〉 , (5.27)

where different signs (−1)θγ,β might arise (in the case of fermion models)
from fermionic commutation relations. The matrix is then very sparse. Note
that the full Hamiltonian can always be split in a small number of separate
terms so that the amplitude of the matrix elements in (5.27) is just a constant
and hence does not need to be stored.

At this point, it becomes necessary to determine the representatives (in
binary form) of the various generated states on the right hand side of (5.27)
by applying to them all the symmetries of GK. To achieve this, the choice
of (5.20) for the binary coding of the configurations is very convenient. It is,
indeed, a simple way to take advantage of the natural decomposition of the
generated states,

|cγ,β〉 = |cγ,β(↑)〉 ⊗ |cγ,β(↓)〉 . (5.28)

Although, we restrict ourselves here, for sake of simplicity, to the general
coding of the Hubbard-like models, the following procedure can be straight-
forwardly applied using the more restrictive Heisenberg form (5.25) for the
configurations |cγ,β〉. The calculation of the representative

|rγ,β〉f = R{|cγ,β(↑)〉 ⊗ |cγ,β(↓)〉} (5.29)

can be done in two steps. First, one applies all the symmetries of GK to
|cγ,β(↑)〉. Since this procedure has to be repeated a large number of times,
the function

R : |c(↑)〉 �−→ |r(↑)〉 . (5.30)

can be, in fact, tabulated, prior to the actual calculation of the matrix ele-
ments. This is made possible since the number of possible states |c(↑)〉 re-
mains, in general quite modest. This procedure enormously speeds up the
calculation of the representatives and justifies the choice of (5.20). Note that
one also needs, in this preliminary calculation, to store, for each configuration
|c(↑)〉, the corresponding ensembles,
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RK[(|c(↑)〉] = {g ∈ GK; g(|c(↑)〉) = |r(↑)〉} . (5.31)

This also requires limited storage since, in most cases, RK[|c(↑)〉] contains
just a single element. In a second step, it is sufficient to apply only the remai-
ning symmetries of RK[|cγ,β(↑)〉] to the |cγ,β(↓)〉 part. A standard hashing
table [13] is then used to find the positions of the representatives in the list.
The connectivity matrix connecting the labels of the initial set of represen-
tatives to the labels of the new set of generated states is then stored on
disk.

Note that the phases related to commutations of fermion operators and/or
to the characters of the symmetry operations involved in the transformation
of the generated states to their representatives have also to be kept. These
phases have the general form,

λγ,β = (−1)θγ,βe(τK, gP (g∗
γ,β)) exp (iK ·T(g∗

γ,β)) , (5.32)

where g∗
γ,β is a group element of RK[|cγ,β(↑)〉] such that

|rγ,β〉f = g∗
γ,β(|cγ,β〉) , (5.33)

which depends on γ and β. It is easy to show that, if there exists more than
a single group element which fulfils (5.33) then, all of them lead to the same
phase factor (5.32).

Since the number of possible different phases given by (5.32) is quite small,
it is possible to store the λγ,β (in some convenient integer form) together with
N{|rγ,β〉f} on a small number of computer bits. For an Hilbert space of 108

(hundred millions) representatives with typically an average of ∼ 50 images
per state, the occupation of the disk is of the order of 5000 Mw i.e. 40 Gb.
This can even be reduced by a factor of two by using each computer word to
store the informations corresponding to two images instead of a single one.
Once it has been generated, the Hamiltonian matrix is cut into several pieces
(typically of the order of 10 to 100 Mw) and the various parts are successively
read from the disk in order to calculate H|Φn〉. The best performances are
obtained when the calculation using the nth part of the matrix and the access
to the disk to read the (n+1)th part are simultaneous. Note that the Lanczos
algorithm as it has been described above is well adapted to be implemented
on a vector supercomputer (e.g. on a NEC-5× 5).

5.3 Examples of Translationally Invariant
Spin Gapped Systems

Here, we first restrict ourselves to systems where the symmetry analysis decri-
bed above can be used. Note however that explicit symmetry breaking may
be present but, in general, the remaining symmetry group contains a large
number of symmetries which can be exploited. Note also that since sponta-
neous symmetry breaking can occur only in the thermodynamic limit, it does
not prevent for finite systems the previous symmetry analysis.
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5.3.1 Application to the 2D J1 − J2 Model

The study of quantum phase transitions in 2D is of great interest. One of the
standard example is the so-called frustrated Heisenberg model (see Fig. 5.1a).
It is defined by (5.7) when only NN and second NN exchange couplings are
retained,

Jxy = J1 if |x− y| = 1,

Jxy = J2 if |x− y| =
√

2, (5.34)
Jxy = 0 otherwise .

Various analytical approaches have been applied to this problem such as spin-
wave calculations [14], large-N SU(N) theories [15], series expansions [16],
and Schwinger boson mean field approaches [17]. However, most of these me-
thods are somewhat biased since they assume the existence of some particular
ground states. Pioneering unbiased ED studies [18–20] have strongly sugge-
sted the existence of a disordered magnetic phase for intermediate couplings
J2/J1. Here, we briefly discuss some more recent subsequent work [11,12,21]
which attempted to obtain more accurate results by a finite size scaling ana-
lysis. Similar studies have also been performed for other S = 1/2 2D spin mo-
dels like the triangular lattice [22], the Kagome lattice [23], the 1/5-depleted
square lattice [24] or the (2D) pyrochlore lattice [25].

Fig. 5.2. Finite size results for M2
N (π, π) for different values of J2. The dashed

lines are least squares fits to the data, using all available clusters. The full lines are
fits using only N = 20, 32, 36 (Reprinted from [12])
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A magnetic ordered phase with a spin modulation Q can be characterised
by an order parameter MN (Q) defined by

M2
N (Q) =

1
N(N + 2)

〈Ψ0|(
N∑

i=1

exp (ixi ·Q)Si)2|Ψ0〉 , (5.35)

where |Ψ0〉 is the ground state. It is important to notice that, in any finite
system, the order parameter itself has a zero expectation value in the ground
state due to spin SU(2) symmetry. In other words, the macroscopic magne-
tisation can slowly fluctuate so that in average it vanishes. It is therefore
essential to consider, as in (5.35), the square of the order parameter which
can be interpreted as a generalised susceptibility.

For weak frustration J2/J1, Néel order with Q = (π, π) is expected, while
for large ratio J2/J1 a collinear phase with Q = (π, 0) or Q = (0, π) consisting
of successive alternating rows of parallel spins is a serious candidate. Indeed,
in such a collinear phase, each sub-lattice has Néel order so it is clear that
it is stabilised by J2. Note that the normalisation factor of the staggered
magnetisations (5.35) is chosen so that the order parameter is independent of
the size in a perfect classical Néel or collinear state. In such ordered phases
where the continuous spin symmetry is spontaneously broken, field theory
arguments [26] suggest a scaling of the form,

MN (Q) � m0(Q) +
C(Q)
N1/2 . (5.36)

Fig. 5.3. Comparison of the finite size fits for the anti-ferromagnetic and collinear
order parameters (left and right curves, respectively) with linear spin wave theory
(Reprinted from [12])
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Square clusters with N = 4p sites (so that (π, 0) belongs to the reciprocal
lattice) are considered (see Sec. II.B), i.e. N=16, 20, 32 and 36. As seen
in Fig. 5.2 corresponding to Q = (π, π) the scaling law (5.36) is very well
satisfied. Note that the 4 × 4 cluster shows systematic deviations. Similar
results are also obtained for the collinear order parameter at larger J2/J1
ratios.

The extrapolated results are shown in Fig. 5.3. The most interesting fea-
ture is the existence of a narrow range of J2/J1 around 0.5 where none of
the ordered states is stable. Various candidates for this disordered phase
have been proposed such as the dimer phase [15] and investigated numeri-
cally [18, 20, 21]. More details on this topic can be found e.g. in the review
article [11].

5.3.2 Application to Spin-Peierls Chains

a) Purely 1D Models

We now move to systems with anisotropic couplings in space (quasi 1D mate-
rials). Let us first consider purely 1D models in order to describe the physical
origin of the spin-Peierls (SP) transition. One of the simplest 1D model which
diplays such a behavior is the frustrated spin-1

2 ring (see Fig. 5.1c), also called
J1 − J2 or zig-zag chain, described by the Hamiltonian

Hfrust =
L∑

i=1

(J1Si.Si+1 + J2Si.Si+2). (5.37)

Its symmetry properties are given in Table 5.1 for L = 32 sites.
The low energy properties of such a model are very interesting because

it is gapless as long as α = J2/J1 remains smaller than a critical value αc �
0.2412 ( [29], Fig. 4). For α > αc, a gap ∆S(α) ∝ e−(α−αc)−1

develops and a
spontaneous dimerization appears, characteristic of the SP transition. At α =
0.5, the so-called Majumdar-Ghosh (MG) point [30], the 2-fold degenerate
ground state is known exactly and consists in the product of spin singlets
located either on odd or on even bonds. Beyond the MG point, the short-
range correlations become incommensurate. The triplet (S = 1) spectrum
of the SP phase is a two-particle (so-called kink or soliton) continuum as
evidenced by the scaling of the soliton-antisoliton binding energy to zero [31].

Adding an explicit dimerization , i.e. a rigid modulation δ of the NN
coupling (see Fig. 5.1), drives immediately the ground state into a SP phase
for any δ �= 0 even if J2 = 0. In term of symmetries, C2 and the translations
of an odd number of lattice spacings are lost (see Fig. 5.1b and Table 5.1)).
If J2 �= 0, the dimerized and frustrated model

Hdim =
L∑

i=1

J1
[
(1 + (−1)iδ)Si.Si+1 + αSi.Si+2

]
(5.38)



240 N. Laflorencie and D. Poilblanc

0.000 0.005 0.010 0.015 0.020
1/L

2

0.241

0.242

0.243

0.244

0.245

0.246

α c(
L)

Fig. 5.4. Critical value αc of the frustration vs the inverse square of the system
size obtained using the method developped in [27]. (Reprinted from [28])

displays an enhancement of the dimerized gapped phase, indeed ∆S(α, δ) −
∆S(α, 0) ∝ δ2/3 [32].

Incommensurate

gapless

Commensurate
SP

0 αc � 0.2412

1

δ

0.5
MG

α

Fig. 5.5. Phase diagram of the frustrated dimerized Heisenbeg AF spin- 1
2 chain in

the α − δ plane. The dotted line is the Shastry-Sutherland line (2α + δ = 1) [33].
On its left side, the phase is SP gapped and commensurate whereas on the right
side, the correlations are incommensurate

These properties are summarized in the phase diagram shown in Fig. 5.5.
Note that the static modulation δ leads to soliton-antisoliton boundstaes as
shown in Fig. 5.6.

b) Chain Mean Field Theory for Coupled Spin Chains

Physically, the previous models are often inadequate to describe the pro-
perties of several compounds like CuGeO3 [34] or LiV2O5 [35] which are
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L = 32, k = 0
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E
J

Fig. 5.6. Lowest lying triplet(•), singlet (◦) and quintuplet (⊗) excitations vs.
the wave vector k for the dimerized frustrated chain (5.38) with J2 = 0.5, δ =
0.05, L = 28. Results for L = 32, k = 0 are shown to the left. ED results reprinted
from [36]

excellent realizations of weakly interacting frustrated spin-1
2 chains. Let us

first consider a set of frustrated spin chains which are coupled by a weak AF
exchange J⊥. This 2D model is governed by the following Hamiltonian

H2D(α, J⊥) =
L∑

i=1

M∑

a=1

[Si,a.Si+1,a + αSi,a.Si+2,a

+J⊥Si,a.Si,a+1]. (5.39)

where i is the lattice index along the chains of lenght L and a labels the M
chains (L and M are chosen to be even and periodic boundary conditions are
assumed in both directions). Obviously it should be possible to study exactly
this spin model on the square lattice but, as we have seen above, it is hard
to perform ED with system larger than 36 spins. Here, we take advantage of
the fact that J⊥ << 1 to perform a MF treatment of the transverse coupling.
Following Schulz [37], the chain mean-field (CMF) version of (5.39) is given
by

HMF
2D (α, J⊥) =

L∑

i=1

M∑

a=1

[Si,a.Si+1,a + αSi,a.Si+2,a

+hi,aS
z
i,a − J⊥〈Sz

i,a〉〈S
z
i,a+1〉], (5.40)

with

hi,a = J⊥(〈Sz
i,a+1〉+ 〈Sz

i,a−1〉), (5.41)
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the local magnetic field to be computed self-consistently. In the absence of
dopant (see Sect. 4), we expect an homogeneous AF phase characterized by
a self-consistent staggered magnetization 〈Sz

i,a〉 = (−1)i+am. Therefore the
coupled chains problem is reduced to a single chain in a staggered magnetic
field hi = ±2(−1)iJ⊥m.

Hsingle(α, J⊥) =
L∑

i=1

[Si.Si+1 + αSi.Si+2 + 2mJ⊥(−1)iSz
i ] + constant,

(5.42)

and the symmetry group of such a model is TL/2. In the absence of frustration
(α = 0), it was shown that m ∼

√
J⊥ [37]. By solving the self-consistency con-

dition using ED of finite chains the transition line J⊥ = Jc
⊥(α) (see Fig. 5.7)

separating the dimerised SP phase (m = 0) and the AF ordered phase (for
which m �= 0) has been obtained in agreement with field theoretic approa-
ches [38]. Finite size effects are small in the gapped regime and especially at
the MG point. Note also that numerical data suggest that the AF order sets
up at arbitrary small coupling when α < αc with a clear finite size scaling
Jc

⊥(L) ∝ 1/L at small α.
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α
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L = 12

L = 16

m
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Fig. 5.7. Phase diagram of the coupled frustrated chains as a function of the
frustration α and the inter-chain magnetic coupling J⊥. The points, calculated for
2 different chain sizes (12 and 16 sites), separate a dimerized phase (SP) from a
Néel ordered phase (AF). The closed diamond shows the order-disorder critical
point at αc � 0.2412. The dashed line represents the expected behavior in the
thermodynamic limit. In the inset, the staggered magnetization m(J⊥) has been
calculated for a L = 12 sites chain along the MG line (dot-dashed line). Along the
α = 0 line, different symbols show the critical J⊥ for L = 8, 12, 16, 18 from top to
bottom and we have checked its scaling to 0 according to a 1/L law
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c) Convergence Issues of the Numerical CMF

The numerical procedure consists of successive Lanczos-diagonalizations of
a frustrated (α) spin-1/2 chain. At each step the AF order parameter m is
calculated and reinjected at the following step as the “new field”. Starting
the numerical procedure with an arbitrary value of m(0) �= 0, the chain of
size L is first diagonalized, m(1) is extracted and then used for the next
iteration. Eventually the procedure converges to the fixed point m∗. A very
interesting feature is that the convergence to m∗ as function of the number
of MF iterations p (see Fig. 5.8) is exponential.

m(p)−m∗ ∝ exp(−p/ξτ ) for p >> ξτ , (5.43)

with ξτ (J⊥) a typical convergence time scale.
In order to study convergence at large p we have considered here small

systems (12 sites) at the MG point where the finite size effects are very
small. We have checked this convergence issue by studing the speed V (p) =
|m(p+ 1)−m(p)| which is exponentially vanishing

V (p) ∝ exp(−t) for t =
p

ξτ
>> 1, (5.44)
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Fig. 5.8. Universal behavior of the convergence speed of the MF iterative procedure
plotted versus the renormalized iteration index t = p

ξτ
. Results are shown for a

system of spins interacting via (5.42) with L = 12 and α = 0.5. From top to
bottom J⊥ = 0.075, 0.13, 0.1, 0.11, 0.108, 0.106. An initial value m(0) = 1/2 is used
for all simulations. Convergences to m∗ = 0 if the phase is SP (solid lines) or m∗ �= 0
(long-dashed lines) if the pase is AF are obtained. The inset shows the behavior of
the typical convergence time scale ξτ as a function of the distance to the critical
point δJ⊥ = J⊥ − Jc

⊥. The curves are power law fits (see text)
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as we can see in Fig. 5.8. It is very important to note that the convergence
of the MF procedure is universal in the sense that the choice of the starting
value m(0) is not crucial.

The time scale ξτ is J⊥-dependant and diverges as a power law ξτ ∼
|δJ |−µ when approaching the critical line where |δJ | = |J⊥− Jc

⊥|. Our datas
suggest µ � 1.06 if Jc

⊥ > J⊥ and µ � 0.95 if J⊥ > Jc
⊥ for L = 12 (see inset

of Fig. 5.8).

5.4 Lanczos Algorithm for Non-uniform Systems:
Application to Doped SP Chains

Doping a SP system with non-magnetic impurities leads to very surprising
new features. For example in Cu1−xMxGeO3 (M=Zn or Mg), the discovery of
coexistence between dimerization and AF long range order at small impurity
concentration has motivated extented experimental [39] and theoretical [36,
40–44] investigations. In the following we report numerical studies of models
for doped coupled spin chains. For sake of completness we also include a
four-spin coupling which originates from cyclic exchange [45,46].

5.4.1 Doped Coupled Frustrated Spin-1
2 Chain

with Four-Spin Exchange

As for the transverse coupling J⊥ in (5.40,5.41), we also apply the MF treat-
ment to the added 4-spin coupling J4(Si,a · Si+1,a)(Si+1,a+1 · Si,a+1). This
leads to a self-consistent modulation of the NN couplings

Heff(α, J⊥, J4) =
∑

i,a

[(1 + δJi,a)Si,a · Si+1,a

+αSi,a · Si+2,a + hi,aS
z
i,a] + constant , (5.45)

with hi,a given by (5.41) and

δJi,a = J4{〈Si,a+1 · Si+1,a+1〉+ 〈Si,a−1 · Si+1,a−1〉}. (5.46)

Such a modulation produced by the J4 term stabilizes the SP phase and
raises the transition line in Fig. 5.7 (for more details, see [47]). Another
interesting feature of this model is its direct link with the magneto-elastic
model considered in [43] where the elastic coupling K plays a role very similar
to that of 1/J4. In the following the parameters α, J⊥ and J4 are set in order
to constrain the system to be in a SP state in the absence of dopants.

A dopant is described as an inert site i.e. all couplings to this site will
be set to zero. Contrary to what we have seen previously, the use of the
translation invariance is now forbidden by the presence of a single defects or
by randomly located defects (see Fig. 5.9). The maximal size accessible with a
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J1

αJ1
J⊥

J4

Fig. 5.9. Schematic picture of the coupled chains model with nearest neighbor,
next-nearest neighbor, inter-chain and 4-spin couplings J1, J2 = αJ1, J⊥, and J4.
Full (resp. open) circles stand for spin- 1

2 sites (resp. non-magnetic dopants)

Lanczos procedure is then reduced because of this lack of symmetry and also
because of the repeated iterative MF procedure. Indeed, the problem can not
be reduced to a single chain model and hence the M non-equivalent chains
have to be diagonalized independently. Following the method used in [44], the
MF equations are solved self-consistently on finite L×M clusters. Therefore,
in the doped case, the time scale of the MF convergence ξτ for the single
chain problem (5.42) is typically multiplied by M .

5.4.2 Confinement

Replacing a single spin-1
2 in a spontaneously dimerized (isolated) spin chain

by a non magnetic dopant (described as an inert site) liberates a free spin
1
2 , named a soliton, which does not bind to the dopant [36]. The soliton can
be depicted as a single unpaired spin (domain) separating two dimer configu-
rations [36]. The physical picture is completely different when a static bond
dimerisation exists and produces an attractive potential between the soliton
and the dopant [36, 40] and consequently leads, under doping, to the forma-
tion of local magnetic moments [36, 42] as well as a rapid suppression of the
spin gap [41]. However, a coupling to a purely one-dimensional (1D) adiabatic
lattice [43] does not produce confinement in contrast to more realistic models
including an elastic inter-chain coupling (to mimic 2D or 3D lattices) [43,44].

Here, we re-examine the confinement problem in the context of the pre-
vious model including interchain magnetic coupling.

a) Different Kinds of Dimer Orders

Let us return to model (5.45). For J4 = 0, the MF treatment of the transverse
magnetic coupling J⊥ does not break the degeneracy of the ground state: each
chain displays a 2-fold degenerate ground state (dimers can stand either on
even or odd bonds) independently from the other ones. The situation changes
radically when J4 �= 0 because the degeneracy is reduced to 2. Indeed, each
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Fig. 5.10. Energy difference ∆Stg−Clm between ground states with staggered and
collumnar dimer orders plotted versus J4 for model (5.45) (without dopant) at
α = 0.5, J⊥ = 0.1 and L = 12

(a) J4 = 0

(b) J4 < 0

(c) J4 > 0

Fig. 5.11. Schematic picture of the soliton confinement mechanism induced by the
coupling J4 of the model (5.45). The non magnetic dopant is represented by an
open circle and the large black bonds stand for stronger dimer bonds. The black
arrow represents the soliton, released by the impurity, which is deconfined if J4 = 0
(a) whereas it is linked to the dopant if J4 �= 0. We can see that this binding is
imposed by the bulk dimerization which is columnar if J4 < 0 (b) or staggered if
J4 > 0 (c)

chain displays the same dimerized pattern if J4 < 0 (columnar dimer order)
whereas the dimer order is staggered in the transverse direction if J4 > 0,
as we can see in Fig. 5.10. Consequently, the soliton remains deconfined [48]
when J4 = 0 as we can observe in Figs. 5.11,5.12. On the other hand, if
J4 �= 0 the bulk dimerization constrains the soliton to lie in the vicinity of
the impurity (see Fig. 5.11).

b) Enhancement of the Magnetization near a Dopant

Under doping, the system becoming inhomogeneous, we define a local mean
staggered magnetization

Mstag
i,a =

1
4
(−1)i+a(2〈Sz

i,a〉 − 〈Sz
i+1,a〉 − 〈Sz

i−1,a〉) (5.47)
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Fig. 5.12. Local magnetization Mstag
i,a for L×M=16 × 8 coupled chains with one

dopant D (shown by arrow) located at a = 1, i = 16 in the dimerised phase (α = 0.5,
J⊥ = 0.1). Circles correspond to J4 = 0 (shown up to the third neighbor chain of
the doped one) and squares (crosses) to J4 = 0.01 (J4 = 0.08). The coupling J2

across the dopant has been set to 0 for convenience (Reprinted from [47])

which has been calculated for a single dopant in a system of size L×M = 16×
8. It is plotted for different values of the four-spin coupling in Fig. 5.12 where
the confinement mechanism can clearly be observed. Note that the inter-chain
coupling induces a “polarization cloud” with strong AF correlations in the
neighbor chains of the doped one.

c) Confinement Length

In order to measure the strength of confinement, a confinement length can
be defined as

ξ‖ =
∑

i i|Sz
i |∑

i |Sz
i |
. (5.48)

In the absence of confinement, the solitonic cloud is located at the center of
the doped chain: ξ‖ = L/2. Otherwise, ξ‖ converges to a finite value when
L→∞. In Fig. 5.13, the confinement lenght is plotted versus J4 for 2 different
system sizes at α = 0.5 and J⊥ = 0.1. The finite size effects decrease for
increasing J4. Note that ξ‖(J4) �= ξ‖(−J4) and a power law [40] with different
exponents η is expected when J4 → 0. A fit gives η ∼ 0.33 if J4 < 0 and
η ∼ 0.50 for J4 > 0 (Fig. 5.13). This asymmetry can be understood from
opposite renormalisations of J1 for different signs of J4. Indeed, if J4 < 0
then δJi,a > 0 and the nearest neighbor MF exchange becomes larger than
the bare one. Opposite effects are induced by J4 > 0.
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Fig. 5.13. ED data of the soliton average position vs J4 calculated for α = 0.5 and
J⊥ = 0.1. Different symbols are used for L×M = 12 × 6 and 16 × 8 clusters. The
long-dashed line is a power-law fit (see text). Inset shows the magnetization profile
in the doped (a = 1) chain at J4 = 0.08, ie ξ‖ � 2.5 (Reprinted from [47])

5.4.3 Effective Interaction

We now turn to the investigation of the effective interaction between dopants.
A system of coupled chains with two dopants is considered here (see Fig. 5.9).
Each impurity releases an effective spin 1

2 , localized at a distance ∼ ξ‖ from
it due to the confining potentiel set by J4. We define an effective pairwise
interaction Jeff as the energy difference of the S = 1 and the S = 0 ground
states. When Jeff = E(S = 1) − E(S = 0) is positive (negative) the spin
interaction is AF (ferromagnetic). Let us first consider the case of two dopants
in the same chain. (i) When the two vacancies are on the same sub-lattice the
moments experience a very small ferromagnetic Jeff < 0 as seen in Fig. 5.14
with ∆a = 0 so that the two effective spins 1

2 are almost free. (ii) When
the two vacancies sit on different sub-lattices, ∆i is odd and the effective
coupling is AF with a magnitude close to the singlet-triplet gap. Fig. 5.14
with ∆a = 0 shows that the decay of Jeff with distance is in fact very slow
for such a configuration. Physically, this result shows that a soliton and an
anti-soliton on the same chain and different sublattices tend to recombine.

The behavior of the pairwise interaction of two dopants located on dif-
ferent chains (∆a = 1, 2, 3, 4) is shown on Fig. 5.14 for ∆a = 1, 2, 3, 4 for
J4 > 0. When dopants are on opposite sub-lattices the effective interaction
is antiferromagnetic. At small dopant separation Jeff(∆i) increases with the
dopant separation as the overlap between the two AF clouds increases until
∆i ∼ 2ξ. For larger separation, Jeff(∆i) decays rapidly. Note that the relea-
sed spin- 1

2 solitons bind on the opposite right and left sides of the dopants
as imposed by the the bulk dimerisation [49]. If dopants are on the same
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Fig. 5.14. Magnitude of the effective magnetic coupling between two impurities
located either on the same chain (a) or on different ones (b-c-d) vs the dopant
separation ∆i in a system of size L × M = 16 × 8 with α = 0.5, J⊥ = 0.1, and
J4 = 0.08. Closed (resp. open) symbols correspond to AF (F) interactions

sub-lattice, solitons are located on the same side of the dopants [50] and the
effective exchange Jeff(∆i) is ferromagnetic and decays rapidly to become
negligible when ∆i > 2ξ. The key feature here is the fact that the effective
pairwise interaction is not frustrating (because of its sign alternation with
distance) although frustration is present in the microscopic underlying mo-
del. AF ordering is then expected (at T = 0) as seen for a related system of
coupled Spin-Peierls chains [44].

5.5 Conclusion

The coexistence between AF order and SP dimer order under doping SP ma-
terials with non magnetic impurities [39] is one of the most surprising pheno-
menon in the field of quantum magnetism. Starting with the non frustating
interaction between two solitonic clouds calculated above, we can construct
an effective model of long range interacting spins 1

2 , randomly diluted on a
square lattice. We have implemented a Quantum Monte Carlo (QMC) al-
gorithm using the Stochastic Series Expansion (SSE) method [51] in order
to study long distance interacting spin-1

2 models. The mechanism of AF or-
dering has been studied at very low temperature and dopant concentration
with very large system sizes, up to 96× 96 [52].
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Abstract. We present a review of different field theory techniques that have proved
very useful in the study of quantum magnets in low dimensions. We first review
the application of the spin-wave analysis and non-linear σ-model techniques in
one and two dimensional quantum antiferromagnets. We discuss in particular the
emergence of Haldane’s conjecture for spin chains and ladders within this formalism.
We also present a brief discussion on the non-linear σ-model description for the
two-dimensional antiferromagnet in the square lattice. In a second part we review
the method of abelian bosonization and its application to the study of the XXZ
spin 1/2 chain and its generalizations, such as the dimerized chain. Non-abelian
bosonization is used to describe both SU(2) symmetric chains with arbitrary spin
S and 2 leg ladders, rederiving Haldane’s conjecture within this formalism. The
inclusion of charge degrees of freedom leading to a Hubbard or a t − J model is
also discussed. Finally, we apply the abelian bosonization approach to the study of
N-leg ladders in amagnetic field, which leads to a further extension of Haldane’s
conjecture.

6.1 Introduction

Field theory techniques have proven in the last decades to be a powerful tool
in the understanding of quantum magnetism. One of its main interests lie
in the relatively simple and universal description it can provide in studying
condensed matter system, and in particular all the exotic behaviors that can
be found in low dimensional strongly correlated systems. For example, phe-
nomena like fractional excitations or spin-charge separation, which are going
to be presented in this chapter, are some of the topics that find a very natu-
ral description in the field theory context. This approach has indeed allowed
to understand the experimental data reflecting the presence of such unusual
behaviors. Another important and more pragmatic issue is the fact that, once
a field theory is built for describing a particular model, physical quantities
such as correlation functions, the magnetic susceptibility or the specific heat
can in general be easily computed. Moreover, the effect of microscopic modi-
fications of the system, as well as the specificity of low dimensional systems,
can also be simply understood through this approach.

The field theory approach have to be considered as a fundamental tool
within the different techniques that are currently used to study condensed
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matter systems. It is complementary and in close connection to other tech-
niques such as integrable models and numerical methods. As we show in
this chapter, the Bethe Ansatz solution of the XXZ spin chain provides in-
formation about the system that is then used to construct the precise field
theory model that describes its large scale behavior. The knowledge of the
field theory allows to compute, for example, the behavior at large distances of
correlation function in a much simpler way than with integrable model techni-
ques. Finite size scaling analysis is another subject in which field theory have
proven to be very useful, providing a natural link with numerical techniques
also commonly used in condensed matter physics.

This chapter provides a review of field theory techniques that are used in
the study of quantum magnets in low dimensions. In the first part we provide
an overview of the spin-wave analysis in one and two dimensional quantum
antiferromagnets. We then concentrate on the derivation of the non-linear
σ-model that describes the low energy dynamics of spin S chains within the
large S approach. The behavior of this model with and without a topological
term, giving rise to Haldane’s conjecture, is discussed. The results obtained
in the context of spin-wave analysis and the non-linear σ-model are then
generalized to the case of spin ladders. A brief discussion on the applications
of this description for the two-dimensional antiferromagnet in the square
lattice closes the first part of this chapter.

In the second part we review the method of abelian bosonization and
apply it to the study of the XXZ spin 1/2 chain in the presence of a ma-
gnetic field, which leads to the Luttinger liquid picture. We discuss how the
microscopic data of the lattice model are related to the field theory para-
meters. We analyze in detail the computation of thermodynamic quantities
and correlation functions within the bosonization method as well as certain
modifications of the XXZ chain. The particularities and non-abelian boso-
nization description of the SU(2) Heisenberg point are also discussed. We
then briefly treat the generalization of those results to the Hubbard and t−J
models to illustrate the inclusion of charge degrees of freedom. Non-abelian
bosonization is also applied to the study of the two leg S = 1/2 SU(2) sym-
metric spin ladder and to higher spin one-dimensional chains where it is used
to rederive Haldane’s conjecture. Finally, we apply the abelian bosonization
approach to the study of N-leg ladders, which leads to a further extension of
Haldane’s conjecture.

The general overview presented here aims not only at providing a descrip-
tion of the usual tools used in field theory for condensed matter physics, but
also to show to the reader how this approach is in almost symbiotic connec-
tion with the other areas described in this book. We also mention in this
chapter many topics that to date are still open questions with the hope that
future progresses in field theory will help to elucidate those issues.
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6.2 Path Integral for Spin Systems

Let us assume that we have an arbitrary number of spins {Sn} labeled by the
generic site index n without, for the moment, making any further supposition
about the geometry and dimensionality of such an array of spins. These
operators satisfy an SU(2) algebra on each site

[Sx
n, S

y
n] = iSz

n and S2
n = S(S + 1), (6.1)

We assume also that the system has a Hamiltonian H ({Si}) that we do
neither need to specify for the moment. The idea is to define a path integral
for such a system as proposed by Haldane (see for example [1], [2]). To avoid
making heavier the notation, let us assume that we have first a single spin.
Following [2], in the 2S + 1 dimensional Hilbert space, we define the states:

|n〉 = eiθ(ẑ×n)·S |S, S〉 (6.2)

where n is a unit vector forming an angle θ with the quantization axis (z)
and |S, S〉 is the highest weight state. A straightforward calculation shows
that:

〈n|S|n〉 = Sn. (6.3)

One can also show that the internal product of two such states gives:

〈n1|n2〉 = eiSΦ(n1,n2,ẑ)
(

1 + n1 · n2

2

)S

(6.4)

where Φ(n1,n2, ẑ) is the solid angle viewed from the origin formed by the
triangle with vertices in n1, n2 and ẑ. Note that Φ(n1,n2, ẑ), as a solid
angle, is defined modulo 4π. This ambiguity has however no importance in
(6.4) because of the periodicity of the exponential. With this over-complete
basis, one can also write the identity operator in the Hilbert space:

I =
∫ (

2S + 1
4π

)
d3n δ(n2 − 1)|n〉〈n| (6.5)

which can be obtained by using the properties of the rotation matrices

DS
M,M ′(n) = 〈S,M |eiθ(ẑ×n)·S|S,M ′〉

in the spins S representation :

2S + 1
4π

∫
d3n δ(n2 − 1)DS∗

M,M ′(n)DS
N,N ′(n) = δM,NδN ′,M ′ .

Imagine now that we want to compute the partition function

Z = Tr{e−βH}
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seen as the evolution of the system in imaginary time with periodic boundary
conditions. We can decompose the evolution in imaginary time into N infi-
nitesimal steps of length δt, with N → ∞, Nδt = β. using then the Trotter
formula:

Z = lim
N→∞

(
e−δtH

)N

an inserting an identity at each intermediary step, we obtain:

Z = lim
N→∞

(
2S + 1

4π

)N
(

N∏

a=1

∫
d3na δ(n2

a − 1)〈n(ta)|e−δtH |n(ta+1)〉
)
.

If now, as in the standard path integral construction, we only keep in each
infinitesimal step the first order in δt:

〈n(ta)|e−δtH |n(ta+1)〉 =
[
〈n(ta)|n(ta+1)〉+ δt〈n(ta)|H|n(ta)〉+O(δt2)

]

and we formally define the path integral measure:

∫
Dn = lim

N→∞

(
2S + 1

4π

)N
(

N∏

a=1

∫
d3na δ(n2

a − 1)

)

using (6.4) we can write the partition function as:

Z =
∫
Dn e−S[n] (6.6)

with

S[n] = −iS
∑

a

Φ(n(ta),n(ta+1), ẑ)

− S
∑

a

log
(

1 + n(ta) · n(ta+1)
2

)
+ δt

∑

a

〈n(ta)|H|n(ta)〉. (6.7)

Since in the computation of the partition function we used periodic boundary
conditions, namely: n(0) = n(β), and if we suppose that the path described
by n(t) is smooth 3, we see that

∑
a

Φ(n(ta),n(ta+1), ẑ) describes the solid

angle, or the area in the unit sphere bounded by the curve n(t), A{n(t)}.
As before, the independence of the partition function of the choice of the
quantization axis or the ambiguity in the definition of the solid angle is a
consequence of the 4π invariance of the phase factor. In (6.7), the second
term is of order (δt)2, the imaginary time continuum limit of this action is
then :

S[n] = −iSA{n(t)}+
∫ β

0
dt〈n(t)|H|n(t)〉. (6.8)

3 This assumption is actually delicate, as in the standard Feynmann path integral,
see [2] and references therein, but we ignore such technical details here.
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Equation (6.8) is the main result of the path integral description for magnetic
systems which we can now apply to spins chains, ladders and two-dimensional
antiferromagnets.

6.3 Effective Action for Antiferromagnetic Spins Chains

Let us assume now that we have a collection of spins S2
i = S(S + 1) forming

a one dimensional array (chain) with the Hamiltonian:

H = J
∑

k

Sn · Sn+1 (6.9)

with J > 0. (6.9) is just the one-dimensional Heisenberg antiferromagnet.
The action (6.8) takes then the explicit form:

S[{nn}] = −iS
∑

n

A{nn(t)}+ JS2
∫ β

0
dt
∑

n

nn(t) · nn+1(t). (6.10)

In order to take the continuum limit in the spatial direction, we need to
identify the low energy, large scale degrees of freedom that can be considered
as slowly varying fields in the action. We can, for this, make use of the known
results from spin wave theory from which we know that low energy modes
are found at zero and π momenta (see also below for the generalization to
the case of ladders). We can then write the ansatz

nn = (−1)n
√

1− a2l2n mn + aln (6.11)

with a the lattice spacing and m2
n = 1. This result, which is valid for large

S, is just telling us that the large scales behavior of the system is governed
by fields representing a staggered and a quasi-homogeneous variation of the
magnetization. The latter field, playing the rôle of angular momentum for n is
chosen to have dimension of density and is responsible of a net magnetization
which is supposed to be small. To order a2, the relation n2

n = 1 is equivalent
to mn · ln = 0. We can now introduce this form for the field nn in (6.10)
and keep only the lowest order in a to take the continuum limit. For the area
term, by noticing that A{−n(t)} = −A{n(t)}, we can group terms two by
two and write the sum as:

∑

i

A{n2i(t)}+A{n2i−1(t)} =

∑

i

A{
√

1− a2l22im2i(t) + al2i(t)}

−A{
√

1− a2l22i−1m2i−1(t)− al2i−1(t)}.
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We can now use the expression relating the difference in the areas produced
by curves n(t) and n(t) + δn(t):

A{n(t) + δn(t)} = A{n(t)}+
∫ β

0
dt δn(t). (∂t(n(t))× n(t))

and we obtain
∑

i

A{n2i(t)}+A{n2i−1(t)} =

−a
∫ β

0
dt
∑

i

(
∆

a
(m2i(t)) + 2l2i(t)

)
. (m2i(t)× ∂t(m2i(t))) +O(a2)(6.12)

where we have used that m2i−1(t) = m2i(t)−∆(m2i(t)) +O(a2).
In the same spirit, and omitting constant terms, the second term in (6.10)

can be written as:

JS2

2

∫ β

0
dt
∑

i

[
(n2i(t) + n2i+1(t))

2 + (n2i+1(t) + n2i+2(t))
2
]

and the lowest order in a gives:

JS2a2

2

∫ β

0
dt
∑

i

{[
−∆
a

m2i(t) + 2l2i

]2
+
[
∆

a
m2i+1(t) + 2l2i+1

]2}
,

which, still to lowest order in a can also be written as:

JS2a2
∫ β

0
dt
∑

i

[
(
∆

a
m2i(t))2 + 4l22i

]
.

We can now collect all the pieces together and take the continuum limit
by replacing ∆

a → ∂x, 2a
∑

i →
∫
dx (the factor of 2 arises from the doubling

of the chain index). We also take the limit of zero temperature T → 0. We
obtain for the total action:

S[m, l] =
JS2a

2

∫
dx dt

[
(∂x(m(x, t))2 + 4l(x, t)2

]

+
iS

2

∫
dxdt (∂x(m(x, t)) + 2l(x, t)) · (m(x, t)× ∂t(m(x, t))) . (6.13)

We immediately notice that this action is quadratic in the variable l. We
can then integrate out this variable and obtain the final result:

S[m] =
∫

dxdt
1
2g
(
v(∂xm)2+

1
v
(∂tm)2 +

iθ

8π
εijm · (∂im× ∂jm)

)
(6.14)
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with g = 2/S the coupling constant, v = 2aJS the spin wave velocity and
the topological angle θ = 2πS. If we want the action to be finite in an infinite
system and at zero temperature, we have to impose that m tends to a fixed
vector m0 at infinity in space and imaginary time. By making all the points
at infinity equivalent, we are just saying that our space time is equivalent
to a sphere S2. Since in each point of the space time m can also be viewed
as an element of S2, the mapping m(x, t) corresponds to an embedding of
the sphere into itself. Such embeddings are classified by what is called the
second homotopy group of the sphere Π2(S2) = Z [3]. To each embedding
corresponds an integer (element of Z) given by the Pontryagin index:

1
8π

∫
dxdt εijm · (∂im× ∂jm) ∈ Z (6.15)

where we immediately recognize in this expression the last term of the action
(6.14). We can then conclude from this result that for integer S, the imaginary
part of the action in (6.14) (which we will call the topological term) is always
a multiple of 2π and plays no role at all, while for half integer spins, as we
will see, the situation is completely different.

6.4 The Hamiltonian Approach

The result (6.14) can also be derived using a Hamiltonian approach; we follow
here the derivation given in [4], [5]. Let us group our spin operators two by
two and define the variables L and M through

S2i = aLi − SMi

S2i+1 = aLi + SMi. (6.16)

These relations can be inverted:

Li =
1
2a

[S2i+1 + S2i]

Mi =
1

2S
[S2i+1 − S2i] (6.17)

and one can then easily show using (6.1) that these variables satisfy the
constraints:

a2L2
i + S2M2

i = S(S + 1) ; Li ·Mi = 0 (6.18)

and the algebra:

[La
i , L

b
j ] =

i

2a
εabcδi,jL

c
i ;

[La
i , L

b
j ] =

i

2a
εabcδi,jM

c
i ;
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[La
i , L

b
j ] ==

ia

2S2 ε
abcδi,jL

c
i . (6.19)

We can rewrite the Hamiltonian (6.9) as:

H = J
∑

i

[S2i · S2i+1 + S2i+1 · S2i+2]

= J
∑

i

[
−S2M2

i + a2L2
i + a2Li · Li+1+

aS (Mi−1 · Li − Li ·Mi+1) +
S2

2
(Mi −Mi+1)2 − S2M2

i

]
(6.20)

where the index of the first term of the last line has been shifted by one for
convenience. To make contact with the result of the preceding section, we
take the continuum limit by keeping in the Hamiltonian only the terms of
order a2. We start by defining the variable x as:

Mi →M(x) ; Mi±1 →M(x)± 2a∂x(M(x)) +O(a2).

Using then the identification

2a
∑

i

→
∫

dx ;
1
2a
δi,j → δ(x− y)

and the relation (6.18), we obtain the continuous Hamiltonian (we omit con-
stant terms):

H =
v

2

∫
dx

[
g

(
L− θ

4π
∂x(M)

)2

+
1
g

(∂x(M))2
]

(6.21)

where g, v and θ have already been defined. The key point is to realize that
for S →∞, the constraint and the algebra become:

M2(x) = 1 ; L(x) ·M(x) = 0 (6.22)

[La(x), Lb(y)] = iεabcδ(x− y)Lc(x) ; [La(x),M b(y)] = iεabcδ(x− y)M c(x)

[Ma(x),M b(y)] = 0 (6.23)

and in this limit we can view L(x) as the angular momentum density M(x)×
Ṁ(x) associated to the normalized field M (note the similarity between this
operator relation and the ansatz (6.11)) . Upon the replacement m → M in
(6.14), and using an appropriate parametrization for this normalized field (as,
for example, the azimuthal angles in the sphere), one can easily show that
(6.21) is the Hamiltonian associated to the Lagrangian of the action (6.14),
which completes our alternative derivation of the non-linear sigma model
description of Heisenberg antiferromagnetic chains in the large S limit.
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6.5 The Non-linear Sigma Model
and Haldane’s Conjecture

Let us first consider the case of integer spins, where the topological term is
absent. We then have the usual O(3) non linear sigma model (NLSM)4 for
which we can write the partition function as:

Z =
∫

D{m}δ(m2 − 1)e−
∫

dxdt 1
2g ((∂xm)2+(∂tm)2) (6.24)

and where we have set the sound velocity v to unity. At the classical level, the
action in (6.24) is scale invariant. Since there is no apparent scale parameter
in the model, one would be tempted to conclude that the correlation func-
tion of this model are algebraically decaying, a phenomenon typical of scale
invariant systems. We will see however that fluctuations change dramatically
this scenario [6]. To see this, we start by expressing the δ function in (6.24)
in terms of a Lagrange multiplier:

Z =

c+i∞∫

c−i∞

D{λ(x)}
∫

D{m(x)}e−
∫

dxdt 1
2g ((∂xm)2+(∂tm)2+λ(m2−1)). (6.25)

In order to understand the qualitative behavior of (6.24), we are going to do
an approximation which consists in replacing the integral in λ by the maximal
value of the integrand:

Z ∼
∫

D{m(x)}e−
∫

dxdt 1
2g ((∂xm)2+(∂tm)2+λm(m2−1)), (6.26)

where the optimal value λm is assumed to be a constant. As we will see below,
such an approximation is valid if we generalize our model to the O(N) non-
linear sigma model and consider the limit N � 1. The approximate partition
function in (6.26) has the advantage of being Gaussian and then all physical
quantities can be easily calculated.

To obtain λm, we integrate over m(x) in (6.25):

Z =

c+i∞∫

c−i∞

D{λ(x)}e 1
2g (

∫
λ(x,t)dxdt− N

2 log(det{−�+λ(x,t)})), (6.27)

where # is the two dimensional Laplace operator. It is now apparent that for
N � 1 we can estimate this integral by a saddle-point approximation. The
condition for maximizing the integrand is:
4 The historical origin of this name comes from the way the field was written in

some choice of variables where the O(N) symmetry is realized non-linearly.
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1
2g

=
N

2
δ

δλ(x, t)
log(det{−#+ λ(x, t)}) (6.28)

And, again, under the assumption of λm being constant, we get:

1 = gNTr{ 1
−#+ λm

}

= gN

∫
d2p

4π2

1
p2 + λm

=
gN

4π
log(Λ2/λm) (6.29)

where Λ is an ultraviolet momentum cut-off. From (6.29) we obtain the op-
timal value:

λm = Λ2e− 4π
gN (6.30)

which indicates us that fluctuations have dynamically generated a mass term
in our original action. Indeed, by using (6.26) one easily sees that correlation
functions are now exponentially decaying with the distance.

The arguments we used to derive the result (6.30) are strictly speaking
valid for N � 1. It is however well established by many techniques that
this result is indeed qualitatively correct for N ≥ 3. The non-linear sigma
model is integrable even at the quantum level and an exact S matrix has
being proposed [7]. An intuitive way to understand this result is by seeing
(6.24) as the partition function of a classical magnet in the continuum. In
such an interpretation, the coupling g plays the role of temperature. Another
approach to understand this phenomenon is given by the renormalization
group analysis. We refer the reader to [6], [8] for a detailed presentation of
the renormalization group techniques and give here the main steps of the
procedure. The idea is to decompose the field in slowly and fast fluctuating
parts; we then integrate over the fast degrees of freedom to obtain an effective
action with renormalized parameters. Following [6] we start by writing our
field as:

m =
√

1−
∑

i

σ2
i ms +

N−1∑

i=1

σiei, (6.31)

where m2
s = 1 and the vectors ei form an orthonormal basis for the space

orthogonal to ms, and the fields σi are the fast fluctuating degrees of freedom.
Keeping only the quadratic terms in the fields σi, the action (6.14) becomes:

∫
dxdt

1
2g




∑

µ

∑

i,j

(∂µσi − ∂µ(ei) · ejσj)2

∑

µ

∑

i,j

(∂µms).ei(∂µms).ej(σiσj −
∑

k

σ2
kδij) +

∑

µ

(∂µms)2



 . (6.32)
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We can now integrate over the fast degrees of freedom in the momentum shell
Λ− δΛ < p < Λ, or in real space between scales L and L + δL to obtain an
effective coupling for the slow part of the action

∑
µ(∂µms)2. To lowest order

in g, the contribution to each component (∂µmi
s)

2, of the slow part of the
action is given by the one point function:

〈σiσi − (N − 1)
∑

k

σ2
k〉

and after some algebra, we can do the integration to obtain the new coupling:

1
g + δg

=
1
g
− (N − 2)g2

Λ∫

Λ−δΛ

d2p

(2π)2p2 . (6.33)

An important observation is that the term ∂µ(ei) · ej does not contribute
to this result. The way to understand this is to notice that the action is
invariant under rotations in the N − 1 dimensional space αi → Mijαj with
αi = σi, (∂µms)·ei and the term ∂µ(ei)·ej behaves under this transformation
as a gauge field. Since

∑
µ(∂µms)2 is rotationally invariant, the lowest order

contribution we can have in the effective action arising from ∂µ(ei) · ej is the
(gauge) invariant term

∑
µ,ν,i,j

(∂µ(ei) · ∂ν(ej) − ∂µ(ei) · ∂ν(ej))2. This gauge

invariant term give rise to non-logarithmic divergences which can be shown
to give no contribution in (6.33). From this result we obtain the β function:

β(g) = − dg

dln(Λ)
=

dg

dln(L)
=

N − 2
2π

g2 +O(g3). (6.34)

That is, by going to large scales g flows to strong coupling indicating a regime
of high temperature where the system is disordered and with a finite corre-
lation length. Of course the original cut-off Λ and coupling g depend on the
microscopic details of the theory, but if we imagine varying such parameters
in our field theory in such a way to keep the dynamically generated scale
constant, the constant λ satisfies the equation:

∂λ

∂Λ
+
∂λ

∂g

∂g

∂Λ
= 0 . (6.35)

Using (6.34) and assuming that λ = Λ2f(g), we obtain:

λ = Λ2e− 4π
g(N−2) (6.36)

which coincides with (6.30) for N →∞. Remember that our case of interest
corresponds to N = 3.

The case of half-integer spins is very different. We have to remember that
in this case the action (6.14) contain the topological term which contributes
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as a destructive phase term in the computation of the partition function. The
coupling constant still flows to the strong coupling regime, but the topologi-
cal term is protected against renormalization because of its discrete nature.
Recalling that the coupling constant g = 2/S is inversely proportional to the
spin S, the flow to strong coupling can be interpreted as a large scale behavior
of the system with smaller spins. Since the topological term remains present
at large scale, one can conclude that the large scales behavior of half integer
spin chains corresponds to the one of spin 1/2 chain, which is known to be
gapless. Shankar and Read have given further support to this conclusion [9].
This drastic difference between integer and half integer antiferromagnetic
spin chains is known as the Haldane conjecture [10].

6.6 Antiferromagnetic Spin Ladders

The techniques we have used so far to obtain the large scales behavior of Hei-
senberg antiferromagnetic chains can be generalized to other geometries. The
closest example is given by the spin ladder systems. Imagine an array of spins
forming a strip composed of N chains. Neighboring spins belonging to the
same chains are supposed to have a coupling J , as before, while neighboring
spins of adjacent chains have a coupling given by J ′. We assume also that
both couplings J and J ′ are positive. The spins on this ladder are labelled
by the chain index n and the row index a, 1 ≤ a ≤ N . N is to be considered
as fixed and finite while the number of spins along the chains diverge in the
thermodynamic limit. The analysis presented in this section follows the lines
of [5].

At the classical level, the lowest energy configurations are given by a Néel
order, say, in the ẑ direction given by:

Sa,n = (−1)a+nSẑ. (6.37)

The equations of motion for a spin belonging to an intermediate row is given
by:

dSa,n

dt
= −Sa,n × [J (Sa,n−1 + Sa,n+1) + J ′ (Sa−1,n + Sa+1,n)] , (6.38)

(for the spins belonging to the edges rows, the a − 1 or a + 1 terms are
absent). We can now use our experience in spin wave analysis to identify the
low energy excitations around this Néel state. We linearize (6.38) and write
the ansatz:

Sx
a,n + iSy

a,n = ei(wt+nq) (Aa(q) + (−1)a+n+1Ba(q)
)
. (6.39)

Note that the example of decoupled chains is a particular case of this model.
With the ansatz proposed here one must of course recover the well-known
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results for the simple chain in the limit J ′ → 0. The resulting eigenvalue
problem shows that there are N − 1 families of solutions, which for J ′ �= 0
have a gapped spectrum (one can show however that such modes become
gapless for the case of decoupled chains J ′ = 0). There is only one family of
excitations with vanishing energy at q = 0 and q = π. These modes are the
counterpart of the gapless modes of the single Heisenberg chain and give us
a clue of the form of the slowly varying fields in a field theory approach.

The solution for small q is given by Ba = B and Aa ∝ q
∑
b

L−1
ab with

L =





4J + J ′ J ′ 0 ..
J ′ 4J + 2J ′ J ′ ..
0 J ′ 4J + 2J ′ ..
.. .. .. ..



 . (6.40)

We can now work out the path integral description of the low energy physics
of the ladder system. We refer the reader to [5] for the Hamiltonian derivation
of it and the subtle differences between the path integral and Hamiltonian
results. By using our basis of states |n〉 in (6.2), we write the action of the
ladder as:

S[{na,n}] = −iS
∑

a,n

A{na,n(t)}+ JS2
∫ β

0
dt
∑

n,a

na,n(t) · na,n+1(t)

+J ′S2
∫ β

0
dt
∑

n

N−1∑

a=1

na,n(t) · na+1,n(t)(6.41)

and, inspired by the spin wave result, we propose as an ansatz the genera-
lization of (6.11):

na,n = (−1)n
√

1− a2α2
al(n)2 m + aαal(n) (6.42)

where αa = Aa/(
∑
a
Aa). Note that excitations along the transverse direc-

tion of the ladder are all supposed to be of high energy. This is due to the
fact that N is kept finite implying a finite difference in the energy levels of
transverse excitations. Then, the effective low energy degrees of freedom are
one-dimensional in nature. The procedure is then standard: we insert expres-
sion (6.42) into (6.41) and work out the continuum limit. The final result is
again the effective action (6.14) with the parameters:

g =
1

S
√∑

a,b

L−1
ab

; v =
SJa√∑
a,b

L−1
ab

; θ = 2πS
N∑

a=1

(−1)a. (6.43)

The important result here is the contribution to the topological term which
is easy to understand by noticing that, with the assumption we made in
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(6.42), each chain will contribute to it with a term 2πS(−1)a. We then see
that only for an odd number of coupled chains, and for half-integer spin will
the topological term give rise to a gapless behavior of our system at zero
temperature. To summarize, the Non-Linear Sigma model approach predicts
that the large scale behavior of the system is governed by the product SN :
if it is an integer, the system is expected to be gaped, while for half-integer
values, the system is gapless.

6.7 Chains with Alternating Bonds

As another example of the applications of the NLSM technique, we can consi-
der the study of spin chains with alternating couplings, or dimerization [4] [5]
with the Hamiltonian:

J
∑

i

[(1 + δ)S2i(t) · S2i+1(t) + (1− δ)S2i+1(t) · S2i+2(t)] . (6.44)

We can use both the path integral or Hamiltonian approach to obtain the
effective action in the continuum limit. Within this last approach, we use
again the operators (6.17). It is a straightforward computation to show that
the Hamiltonian is now:

H = J
∑

i

[
−(1 + δ)S2M2

i + a2(1 + δ)L2
i + a2(1− δ)Li · Li+1+

aS(1− δ) (Mi−1 · Li − Li ·Mi+1) +
S2

2
(1− δ)(Mi −Mi+1)2 − S2(1− δ)M2

i

]
(6.45)

and completing squares and taking the continuum limit as before, we obtain
(see [4]):

H =
ṽ

2

∫
dx



g̃
(

L− θ̃

4π
∂x(M)

)2

+
1
g̃

(∂x(M))2


 (6.46)

with now g̃ = 2/(S
√

1− δ2), ṽ = 2aJS
√

1− δ2 and θ̃ = 2πS(1− δ). Building
the corresponding Lagrangian we observe that the resulting sigma model
has now a topological term with a factor of 1 − δ in front. This result can
be easily obtained also within the path integral approach. The topological
term changes sign under a parity transformation, as well as time reversal and
m → −m. In the non–dimerized case (which is parity invariant) this fact
has no importance since the factor in front of it is a multiple of π and an
overall sign has no effect in the computation of the partition function. The
situation is different in the presence of dimerization. Now the total action is
not anymore invariant under such transformation.
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One important question is what is the large scales behavior of the NLSM
in the presence of a topological term with coefficient different from ±π. We
refer the reader to [4] to a discussion about this delicate issue and just anno-
unce the commonly believed scenario: the NLSM is massless only for θ = ±π.
A result in support of the idea that for a nontrivial θ we obtain a massive
behavior is the fact that a spin 1/2 chain with dimerization has a gap in
the spectrum, as we are going to see below in the context of bosonization.
Based in this belief we can then conclude that by varying the parameter δ
one should encounter 2S + 1 gapless points in a spin S chain. Such results
can also be extended to the case of spin ladders where different kinds of di-
merizations are conceivable [5], and where, again, one recover a NLSM with
a non-integer factor for the topological term.

6.8 The Two-Dimensional Heisenberg Antiferromagnet

We start our discussion on two-dimensional antiferromagnets by considering
spins S located at the vertices of a square lattice Si,j , where i and j label
the position on the lattice for each spin. The Hamiltonian is:

H = J
∑

i,j

Si,j · (Si+1,j + Si,j+1). (6.47)

We are going to consider again the T → 0 limit. Within the path integral
approach, the effective action is given by:

S[{ni,j}] = −iS
∑

i,j

A{ni,j(t)}+ JS2
∫

dt
∑

i,j

ni,j(t) · (ni+1,j(t) + ni,j+1(t)).

(6.48)

We are going again to make use of the result of spin wave theory and assume
that, for large S, the low-energy physics of the system can be described by
the ansatz:

ni,j = (−1)i+j
√

1− a2l2i,j mi,j + ali,j . (6.49)

Before obtaining explicitly the effective action arising from this ansatz,
let us discuss first which kind of topological terms one can expect in the
computation of the partition function. In order to have a finite value for
the action, we assume again that the field configuration tends to the same
constant field at spatial and imaginary time infinity. By associating all the
points at infinity, the space-(imaginary)time manifold corresponds now to S3.
On the other hand, the order parameter field is still en element of S2. The
possibility of having configurations of the spin field with non-trivial winding
is given by the homotopy group Π2(S3) = 1 which turns out to be trivial.
One can then already see that the specifics in the physics of one-dimensional
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systems are not recovered in the square lattice. The situation can be more
subtle for frustrating systems, like the Heisenberg antiferromagnet in the
triangular lattice. In this case the classical Néel configuration is obtained by
imposing that adjacent spins in each triangle form a planar configuration
with a relative angle of 2π/3. The orientation of such triad is characterized
by an element of SO(3): we have to specify a vector orthogonal to the plane
of the triad and the angle that forms on this plane the triad with respect to
a reference configuration. Since Π2(SO(3)) = Z, we can expect in this case
to have non-trivial contributions to the partition function from a topological
origin. A microscopic derivation of the effective action has revealed indeed the
possibility of such kind of non-trivial contributions [11], but its consequences
in the large scale physics are much less easy to understand than in the one-
dimensional case.

Let us now resume our discussion about the antiferromagnet in the square
lattice, where topology can still play a rôle. Any field configuration at a given
time can be characterized by an integer corresponding to the Pontryagin index
that we have discussed before:

1
4π

∫
dxdym · (∂xm× ∂ym). (6.50)

If the field m(x, y, t) varies smoothly with the time, this quantity keeps the
same integer value all along the time. This quantity corresponds to the total
charge of textural defects of the field configuration, called skyrmions [12].
The presence of such a term in the effective action would have dramatic
consequences on the statistic of such skyrmions. Haldane [13] has shown
however that the effective action of the square lattice antiferromagnet has
no such topological terms. He considered however the possibility of singular
configurations of the field allowing for tunneling processes that change this
integer index. Such a kind of singularity, called a hedgehog, can play a rôle
if the system is disordered and Haldane found a non-trivial S dependence of
that term on the basis of a microscopic derivation of the effective action. We
limit ourselves in this discussion to the case of non-singular configurations of
the field and derive the effective action arising from the ansatz (6.49).

The part arising from the Hamiltonian can be treated in the same spirit
as in the one-dimensional case and we have:

JS2
∫

dt
∑

i,j

ni,j(t) · (ni+1,j(t) + ni,j+1(t)) =

JS2

2

∫
dt




∑

i,j

(ni,j(t) + ni+1,j(t))
2 +

∑

i,j

(ni,j(t) + ni,j+1(t))
2





which in the continuum limit gives:

JS2

2

∫
dt

∫
dx

∫
dy
(
(∂xm)2 + (∂ym)2 + 8l2

)
.



6 Field-Theoretical Methods in Quantum Magnetism 269

The outcome of the area term is a bit more subtle. We start by grouping the
contribution of spins two by two along, say, the x̂ direction, as we did in the
one-dimensional case and we get:

−a
∫

dt
∑

i,j

(
(−1)j ∆i

a
(m2i,j(t)) + 2l2i,j(t)

)
· (m2i,j(t)× ∂t(m2i,j(t))) +O(a2)

(6.51)

where ∆i stands for the difference (or lattice derivative) in the i (x̂) direction.
We know that the term

∫
dt
∑

i

(
∆i

a
(m2i,j(t))

)
· (m2i,j(t)× ∂t(m2i,j(t)))

is going to give rise to the integer associated to the Pontryagin index in the
x-t space-time slice. Since the field m is assumed to be slowly varying and
non-singular, this integer must be the same for each row j. Then, because of
the alternating sign in the sum in (6.51), this term cancels. In the continuous
limit, the only contribution from the area term is then:

iS

a

∫
dt

∫
dx

∫
dyl(x, y, t) · (m(x, y, t)× ∂t(m(x, y, t))) .

Collecting all the terms together and, again, integrating over the field l we
obtain the final result for the action:

S =
1
2g

∫
dxdydt

(
v
[
(∂xm)2 + (∂ym)2

]
+

1
v
(∂tm)2

)
(6.52)

with g = 2
√

2a/S, v = 2
√

2aJS. To understand the behavior of this action,
we start by noticing that the partition function is equivalent to that of a con-
tinuous magnet in three dimensions. Again g plays the rôle of a temperature
and one expects the existence of some critical value below which the O(3)
symmetry is broken.

To see this in more detail, we proceed as in the (1+1) dimensional case
and consider the O(N) non-linear sigma model. The procedure is strictly the
same, and we obtain again the saddle-point equation:

1 = gNtr{ 1
−#+ λm

}

= gN

∫
d3p

(2π)3
1

p2 + λm
(6.53)

where now the integral over momenta is three-dimensional. As in the (1+1)
case, this integral is divergent at high momenta and has to be regularized by
a cut-off Λ ∼ 1

a . By a careful inspection of the integral (6.53), one can see
that there is a real and strictly positive solution for λm for any value of g
bigger than the critical value gc obtained from:
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1 = gcN

∫
d3p

(2π)3
1
p2 =

gcNΛ

2π2 . (6.54)

For any g > gc the scenario is similar to the (1+1) dimensional case where
the symmetry is unbroken and excitations acquire a gap.

If g < gc, there is no real and positive solution of (6.53). This phase
corresponds to the broken symmetry phase we mentioned above. This scena-
rio is also supported by a one loop computation of the β function in 2 + ε
dimensions (and setting ε = 1 here):

β(g) = −g +
N − 2

2π
g2 + ...

(recall that now g is a dimension-full constant). This result suggests that there
is a critical value of g which is the only point in which the system is truly
scale invariant. Below that value the system flows to the low temperature
phase and above it it flows to the high temperature phase.

For very small g, and taking back N = 3 we can describe our field as a
small deformation of an homogeneous vector, say, in the ẑ direction:

m(x, y, t) = (
√

1− α2
1 − α2

2, α1(x, y, t), α2(x, y, t))

and the remaining action

S ∼ 1
2g

2∑

a=1

∫
dxdydt

(
c
[
(∂xαa)2 + (∂yαa)2

]
+

1
c
(∂tαa)2 + ...

)
(6.55)

is simply the one of two massless Goldstone modes. We thus conclude that
there must be a critical value of the coupling constant, proportional to a that
separates the ordered from the disordered phase. This means that there must
be a critical value of the spin magnitude Sc above which the system is orde-
red at zero temperature. Since we have by now numerical and experimental
evidence that the spin 1/2 Heisenberg antiferromagnet has an ordered ground
state, we then conclude that it is ordered for all values of S at T = 0.

6.9 Bosonization of 1D Systems

6.9.1 XXZ Chain in a Magnetic Field: Bosonization
and Luttinger Liquid Description

We consider now a generalization of the one-dimensional SU(2) Hamiltonian
(6.9) for S = 1/2, by including an anisotropy term in the z direction, which
we parameterize by ∆, and an external magnetic field h applied along the
z-axis. The resulting model is known as the XXZ chain which, being inte-
grable, allows for a detailed analysis of the low energy theory using abelian
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bosonization. This simple theory also serves as a starting point for the study
of many different situations which can be described by its perturbations as
the case of modulated chains or N leg ladders made up of XXZ chains. Given
its importance, we present the bosonization analysis in detail.

The lattice Hamiltonian is given by

H latt
XXZ = J

∑

n

(
1
2
(
S+

n S
−
n+1 + S−

n S
+
n+1

)
+∆Sz

nS
z
n+1

)
− h

∑

n

Sz
n . (6.56)

where we consider J > 0. S±
n = Sx

n ± iSy
n are the spin raising and lowering

operators where Sx,y,z
n are the spin operators acting on site n and satyisfying

the SU(2) algebra (6.1). In this section we restrict ourselves to S = 1/2.
This model has a U(1) invariance corresponding to rotations around the

internal z axis for generic ∆. For ∆ = 0 we have the XY model which can be
solved exactly using the Jordan-Wigner transformation and it is the starting
point of the bosonization procedure that we describe below. The full SU(2)
spin symmetry is recovered at ∆ = 1 and h = 0 where it is more convenient
to apply non-abelian bosonization. This case will be discussed in Sect. 9.3.

We first summarize the outcome of the bosonization of the XXZ chain
and then present its derivation in detail. For a complete bibliography see
[4, 14–17] and references therein.

The Hamiltonian (6.56) is exactly solvable by Bethe ansatz and it can be
shown that its low-energy properties are described by a scalar boson with a
Hamiltonian given by

Hcont
XXZ =

v

2

∫
dx
(
K
(
∂xφ̃(x)

)2
+

1
K

(∂xφ(x))2
)

(6.57)

where φ̃ is the field dual to the scalar field φ and it is defined in terms of
its canonical momentum as ∂xφ̃ = Π. This notation is usually introduced
in order to simplify the expressions of the spin operators in the continuum
limit; see the Appendix for details on our conventions.

The Fermi velocity v and the so-called Luttinger parameter K depend on
both the magnetic field and the anisotropy parameter ∆. These two parame-
ters determine completely the low energy dynamics of the lattice model and
they can be computed from the Bethe Ansatz solution. For zero magnetic
field and −1 < ∆ < 1 they can be found in closed form:

K(∆) =
π

2(π − θ)
v(∆) =

π

2
sin θ
θ

(6.58)

where cos(θ) = ∆ and we have set J = 1. Otherwise, one has to solve
numerically a set of integro-differential equations (see [18]) which result is
discussed below.

The Hamiltonian (6.57) corresponds to a conformal field theory with cen-
tral charge c = 1 and the free boson is compactified at radius R, i.e. it
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satisfies φ = φ + 2πR, where R is related to the Luttinger parameter K as
R2 = 1/(2πK). The importance of this restriction is discussed in the Appen-
dix.

Let us consider first the XY case, i.e. ∆ = 0, and for convenience let
us rotate by π the spins on every second site around the z axis in spin
space, which simply amounts to an irrelevant change of the overall sign of
the exchange term (in this case J and −J lead to equivalent models).

Then it is convenient to write the spin operators in terms of spinless
fermions ψn, through the so-called Jordan-Wigner transformation:

Sz
n = ψ†

nψn − 1/2 (6.59)

S+
n = e−iαnψ†

n , αn = π

n−1∑

j=0

(
ψ†

jψj

)
. (6.60)

It is easy to show that these operators satisfy the SU(2) algebra (6.1) provi-
ded S = 1/2 and the spinless fermions ψn are canonical, i.e. {ψn, ψ

†
n′} = δn,n′ .

The Hamiltonian (6.56) can then be written as

H latt
XY = J

N∑

n=1

(
−1

2

(
ψ†

nψn+1 − ψnψ
†
n+1

)
− h

(
ψ†

nψn − 1/2
))

. (6.61)

This problem can be readily solved by Fourier transforming

ψ̃k =
1√
N

∑

n

ψne
−ikna (6.62)

where a is the lattice spacing and the momentum k is restricted to the first
Brillouin zone, k ε (−π/a, π/a].

H latt
XY = −J

∑

k

cos(k)ψ̃†
kψ̃k − h

∑

k

ψ̃†
kψ̃k. (6.63)

where we see that we have one band of fermions with dispersion e(k) =
−J cos(k) and chemical potential −h. The ground state is obtained by filling
all single particle states which have energies e(k) < h as in Fig. 6.1

Normalizing the magnetization as M = 2
N

∑
n S

z
n = M(h), we see that

the Fermi momentum is given by

kF = ±π
2

(1 +M). (6.64)

Since we are interested in the low energy properties of the model, we keep
only the modes close to the Fermi surface (here consisting of two points) by
restricting the sum in (6.63) to |k ± kF | ≤ Λ, with Λ an ultraviolet cutoff.
This allows us to study the system at length scales larger than 1/Λ.
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k
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−

e(k)
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J

Fig. 6.1. Dispersion

Writing the fermions as (x = na)

ψ(x)√
a
≈ eikF xψL(x) + e−ikF xψR(x) (6.65)

where ψR and ψL vary slowly with x in a scale of order a > 1/Λ, and contain
the Fourier modes around ±kF respectively, we obtain

Hcont
XY = iv

∫
dx[ψ†

R∂xψR − ψ†
L∂xψL] (6.66)

where the Fermi velocity v = ∂e(k)/∂k|k=kF
= Ja sin(kF ) which we set to 1

in what follows. This is the Dirac Hamiltonian in (1 + 1) dimensions. This
means that the low energy theory for the XX case (i.e. ∆ = 0) corresponds
to free fermions.

One can easily compute the fermion two point functions for right and left
movers that are given by

〈ψR(x, t)ψ†
R(0, 0)〉 =

1
2πa

1
z

(6.67)

〈ψL(x, t)ψ†
L(0, 0)〉 =

1
2πa

1
z̄

(6.68)

where z = t+ ix, z̄ = t− ix.
From these correlators one can compute the one particle momentum dis-

tribution functions which show the characteristic Fermi liquid behaviour. We
will see below that this behaviour is changed radically as soon as interactions
are taken into account.

In order to treat the interactions that arise for ∆ �= 0 it is more convenient
to map the fermionic theory into an equivalent bosonic one, a procedure
usually called bosonization.
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It can be shown [19] that the fermionic theory described by (6.66) can be
equivalently reformulated in terms of bosonic variables with Hamiltonian

H =
1
2

∫
dx[(∂xφ)2 + (∂xφ̃)2], (6.69)

where φ is a scalar field and φ̃ is defined in terms of the conjugate momentum
Π(x) = ∂xφ̃(x). Canonical commutation relations between φ and Π imply

[φ(x), φ̃(x′)] = − i

2
sign(x− x′) (6.70)

while all other commutators are zero.
The key observation is that the fermion operators can be written in terms

of the scalar field as

ψR(x) = ηR
1√
2πa

: ei
√

4πφR(x) : , ψL(x) = ηL
1√
2πa

: e−i
√

4πφL(x) :(6.71)

where ηR,L are the so-called Klein factors which satisfy anticommutation
relations {ηi, ηj} = 2δij . These Klein factors are operators which act on an
auxiliary Hilbert space that can be chosen arbitrarily and this freedom is
exploited to eliminate them from the effective theory (see below). The right
and left components φR,L are defined in terms of the bosonic field and its
dual as

φ = φR + φL φ̃ = φR − φL . (6.72)

The fields in the right hand side of (6.71) obey anticommutation rules, as
can be easily verified using (6.70), and their two-point functions reproduce
the free fermion results (6.68) (see the Appendix for details).

One can further show that the fermionic currents can be bosonized as

JR = : ψ†
RψR : (x) = − i√

π
∂zφR(x),

JL = : ψ†
LψL : (x) =

i√
π
∂z̄φL(x) (6.73)

where Klein factors do not appear here since η†
i ηi = 1 for i = R,L. In

the following we will not include the Klein factors explicitly to simplify the
notation. This is only possible whenever one can simultaneously diagonalize
all the Klein operators which appear in a given problem, which is trivially the
case for a single chain: In this case we have only two different Klein operators
ηR and ηL and henceforth the only non-trivial products that could appear in
the interaction terms are tRL ≡ ηRηL and tLR = −tRL. We can then choose
a basis of the Hilbert space where Klein operators act which diagonalizes tRL

and tLR simultaneously and then forget about them. We discuss this issue in
more detail in the case of N -leg ladders in Sect. 9.9 where the situation is a
bit more complicated.
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The interaction terms which arise when ∆ �= 0 i.e.,

δH = ∆

N∑

n=1

(
Sz

nS
z
n+1
)

= ∆

N∑

n=1

((
ψ†

nψn − 1/2
) (

ψ†
n+1ψn+1 − 1/2

))
,

(6.74)

can be rewritten using (6.59) and (6.65) as

δH = ∆

∫
dx [ρ(x) + (−1)xM(x)] .

[
ρ(x+ a) + (−1)x+aM(x+ a)

]
, (6.75)

where

ρ(x) =: ψ†
RψR + ψ†

LψL : and M(x) = ψ†
LψR + ψ†

RψL. (6.76)

Expanding up to first order in a and eliminating oscillatory terms one
obtains

δH = ∆

∫
dx
(
4JRJL + J2

R + J2
L −

(
(ψ†

LψR)2 +H.c.
))

. (6.77)

The first three terms which are quadratic in the currents are marginal in the
renormalization group sense and can be easily handled using bosonization.
The last one is irrelevant for ∆ < 1 so we postpone its analysis to a later
stage. Quadratic interactions between currents arise in the so-called Thirring
model and hence are usually termed “Thirring-like” terms.

The current-current terms are bosonized using (6.71) and (6.73) as

δH =
1
π
∆

∫
dx
(
4∂xφL∂xφR − (∂xφR)2 − (∂xφL)2

)
. (6.78)

This term can be absorbed in (6.69) and the full bosonized XXZ Hamil-
tonian then reads

H =
v

2

∫
dx

[
1
K

(∂xφ)2 +K(∂xφ̃)2
]
, (6.79)

where, up to first order in ∆, we have

K = 1− 2∆
π

, (6.80)

which provide the first term in the expansion of (6.58) for small ∆. The
situation with the effective velocity v is less straightforward, as discussed in
[20]. In this case one has to take into account the renormalization of the Fermi
velocity due to the ∆ interaction on the lattice before taking the continuum
limit. In this way one gets to first order in ∆

v = 1 +
2∆
π

. (6.81)
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One can improve these results by using the exact Bethe Ansatz solution
from which one can extract the exact values of v andK, as given in (6.58). The
idea is to compare the asymptotics of the XXZ chain correlation functions
obtained via the Bethe Ansatz solution in a finite volume L with that of the
free boson defined by (6.79). It should be stressed that the relation between
kF and M (6.64) is not modified by the interactions. One further shows in
this way that the bosonic field has to be compactified with a radius R given
in terms of the Luttinger parameter K as R2 = 1/(2πK). This means that φ
and φ+2πR are identified at each point, and this leads to strong restrictions
to the possible perturbations which could appear (see the Appendix).

We can now study the effects of the interactions on the low energy beha-
viour.

To this end, let us first compute the two point functions of the fermions
for ∆ �= 0. Using (6.71) and (6.79) one can easily show that (6.67) modifies
to

〈ψR(x, t)ψ†
R(0, 0)〉 =

1
2πa

1
z2dz̄2d̄

(6.82)

where d = (K+1/K+2)/8,d̄ = (K+1/K−2)/8 and K(∆) is given in (6.58).
A similar expression is obtained for the left-handed fermions. One can already
observe the drastic change in the exponents caused by the interactions.

The most dramatic effect of the interactions is the disappearance of the
quasiparticle peak in the Fourier transformed Green function, with the con-
sequent disappearance of the finite jump in the momentum distribution fun-
ction.

More precisely, the spectral function at zero temperature which is defined
as

ρ(q, ω) ≡ − 1
π

ImGR(kF + q, ω) , (6.83)

where GR(k, ω) is the Fourier transformed retarded two point function

GR(x, t) ≡ −iΘ(t)
〈{

ψR(x, t), ψ†
R(0, 0)

}〉
, (6.84)

can be computed to give

ρ(q, ω) = −2 sin(2πD)Γ (1− 2d)Γ (1− 2d̄)|w − q|2d−1|w + q|2d̄−1 . (6.85)

where D = d+ d̄ is the scaling dimension of the interacting fermion.
From this last expression one can obtain the single particle density of sta-

tes by integrating over the momentum, which leads to a power law behaviour

N(ω) ≈ |w|2D−1 (6.86)

instead of the delta function peak characteristic of a Fermi liquid.
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One can also compute the momentum distribution which gives

n(k) ≈ n(kF ) + const. sign(k − kF )|k − kF |+ · · · (6.87)

instead of the Fermi liquid behaviour in which n(k) presents a finite jump
at kF , showing again the radical difference between the low energy theory of
the XXZ chain and a Fermi liquid.

Another crucial difference between a Fermi liquid and our present theory
is that in the former the exponents that control the space decay of correlations
are universal (in the sense that they do not depend on the interactions) while
they do depend on the interactions in the latter case.

All these features have motivated the name of Luttinger liquid to describe
this kind of systems [10].

As a final step, the bosonized expressions for the spin operators are ob-
tained using (6.59), (6.60), (6.65) and (6.71) leading to

Sz
x ≈

1√
2π

∂φ

∂x
+ a : cos(2kFx+

√
2πφ) : +

〈M〉
2

, (6.88)

and

S±
x ≈ (−1)x : e±i

√
2πφ̃(b cos(2kFx+

√
2πφ) + c) : (6.89)

where we have rescaled K → 2K in what follows, so that the free fermion
point now corresponds to K = 2. The colons denote normal ordering with
respect to the groundstate with magnetization 〈M〉, which leads to the con-
stant term in (6.88). The prefactor 1/2 arises from our normalization of the
magnetization to saturation values 〈M〉 = ±1. The constants a, b and c are
non-universal and can be computed numerically and in particular an exact
expression for b has been proposed in [21] for h = 0.

As we mentioned above, the parameter K in (6.57) can be computed by
solving a set of integral equations obtained in the Bethe ansatz solution [22].
The results obtained from them are summarized in the magnetic phase dia-
gram for the XXZ-chain (Fig. 6.2). There are two gapped phases: A ferro-
magnetic one at sufficiently strong fields and an antiferromagnetic phase for
∆ > 1 at small fields. In between is the massless phase where the bosonized
form (6.57) is valid [18].

The transition between the ferromagnetic commensurate phase and the
massless incommensurate phase, which occurs on the line huc = (1 + ∆)J ,
is an example of the Dzhaparidze-Nersesyan-Pokrovsky-Talapov, universality
class [23,24], i.e. for 〈M〉 → 1 the magnetization behaves as

(〈M〉 −Mc)
2 ∼ h2 − h2

uc (6.90)

with here Mc = 1.
This transition, which is an example of a commensurate-incommensurate

(C-IC) transition can be described in the bosonization language by noticing
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Fig. 6.2. Magnetic phase diagram of the XXZ-chain (6.56).

that for magnetic fields above saturation, (h > huc), one has to consider an
additional operator which becomes commensurate for 〈M〉 = 1. The Hamil-
tonian is then given by

H = H0 +
∫

dx cos
√

2πφ(x) + heff

∫
dx∂xφ (6.91)

where the last term corresponds to the interaction with the magnetic field
in the bosonized language (heff ∝ h) has no effect for h > huc due to the
presence of the gap [25]. The cos term which arises at 〈M〉 = 1 is relevant
and then responsible for the gap. By decreasing h→ huc one can then drive
the system into a massless regime and precisely at the transition point the
Luttinger parameter takes the universal value K = 2 [23,24].

The other transition line starts at ∆ = 1 and h/J = 0, i.e. at the SU(2)
point (see Sect. 9.3 for the study of this case using non-abelian bosonization).
The Luttinger parameter takes the value K = 1 at this point and hence one
has to include in the analysis of the low-energy dynamics the operator of
dimension 2K

O(x) = cos(
√

8πφ(x)) , (6.92)

which is marginal at this point and becomes relevant for smaller K (bigger
∆). One can easily show how this operator arises by plugging the bosonized
expression of Sz (6.88) in the ∆ interaction term (6.74). This operator opens
a gap in the spectrum via a Kosterlitz-Thouless transition [26] and from
the Bethe Ansatz equations one readily obtains the characteristic stretched
exponential decay for the gap for ∆ slightly bigger than one:

hc

J
∼ 4πe

− π2

2
√

2(∆−1) (for ∆ slightly bigger than 1). (6.93)
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6.9.2 Thermodynamics and Correlations

We are now ready to analyze the thermodynamic properties of the XXZ
chain in the low energy limit. Spin-spin correlation functions can be computed
using (6.88, 6.89) together with the Hamiltonian (6.57) as well as (6.186,
6.189, 6.195) in the Appendix, with g = 1/K. One obtains in this way the
following expressions for the equal time correlators (we set m = 1 hereafter):

〈Sz
x1
Sz

x2
〉 ≈ 〈M〉2

4
+

K

4π2

1
|x1 − x2|2

+
a2

2
cos(2kF (x1 − x2))

|x1 − x2|K
(6.94)

〈S+
x1
S−

x2
〉 ≈ −b

2

2
cos((2kF − π)(x1 − x2))

|x1 − x2|K+ 1
K

+ (−1)(x1−x2) c2

|x1 − x2|
1
K

(6.95)

where both staggered and non-staggered contributions are obtained.
From (6.94) we observe that for ∆ > 0, i.e. in the AF region, K < 2 and

hence the staggered contribution dominates, signaling the expected tendency
towards antiferromagnetic ordering. For ∆ > 2 instead, since K > 2, it is
the non-staggered term that dominates at long distances, as expected in the
ferromagnetic side. However, as expected in one dimension, there is no true
long range order since the correlators decay slowly with a power law, which
is called quasi-long range order. More importantly, it should be stressed that
the power law decay is given by the Luttinger parameter K which is non-
universal and depends on the microscopic details, such as the anisotropy ∆
the magnetic field, etc.

Using the above expressions one can compute different thermodynamic
properties such as the magnetic static susceptibility [27] and transport pro-
perties such as the dynamical susceptibility and thermal conductivity. These
computations can be extended to finite (small) temperature by performing
a conformal transformation which maps the plane (z) into the cylinder (ζ).
This transformation compactifies the imaginary time direction via

z(ζ) = exp(2πζ/β) , (6.96)

where β = 1/T .
Following [27], let us compute the magnetic susceptibility, which is defined

as

χ ≡ ∂M

∂h
= β

Tr[(
∑

n S
z
n)2 e−βH ]

Tr [e−βH ]
− β

Tr
[
(
∑

n S
z
n) e−βH

]2

[Tr [e−βH ]]2
. (6.97)

and hence

χ = β

(
L
∑

n

〈Sz
nS

z
0 〉 −M2

)
(6.98)
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Using the bosonized expression for the spin operators and noticing that after
the integration the oscillating terms are eliminated, we are led to compute

βL
∑

n

〈Sz
nS

z
0 〉 → β

∫ ∞

−∞
dx 〈Sz

xS
z
0 〉 =

β

2π

∫ ∞

−∞
dx 〈∂xφ(x)∂xφ(0)〉 , (6.99)

Using (6.187), (6.188) one can easily compute the needed zero temperature
correlations (recovering the Fermi velocity)

〈∂xφR,L(x, τ)∂xφR,L(0, 0)〉 = − K

4π(vτ ± ix)2
. (6.100)

We can extend this result to finite (but small) temperatures by means of
the conformal transformation (6.96), which leads to the replacement

vτ ± ix→ (vβ/π) sin(π
vτ ± ix

vβ
) (6.101)

in (6.100).
We are thus led to evaluate

β

∫ ∞

−∞
dx 〈Sz

xS
z
0 〉 = − K

8v2β

∫ ∞

−∞
dx

(
1

sin2(π vτ+ix
vβ )

+
1

sin2(π vτ−ix
vβ )

)
,

(6.102)

which can be easily done by using the following change of variables u =
tan(πτ/β);w = −i tan(iπx/(vβ)).

We finally obtain

χ =
K

πv
. (6.103)

This result is valid for small temperatures and independent of T as it is
expected from the scale invariance of the system.

By including the effects of the operator (6.92) which is irrelevant for ∆ < 1
and becomes marginal at the SU(2) point as we already discussed, one can
compute the next to leading term in the low temperature behavior of the
susceptibility. One can do this by computing the two point correlator of the
current in (6.99) using perturbation theory to include the perturbation term.
For 1/2 < ∆ < 1 one obtains a correction term proportional to T 4(K−1)

and for ∆ < 1/2 it takes the universal form T 2. In the SU(2) case, ∆ = 1,
the perturbation is marginally irrelevant and the correction term to the low
temperature susceptibility is then logarithmic, ∝ ln−1(T0/T ) with T0 a given
constant. This result has been shown to agree quite well with the exact Bethe
Ansatz result [27].

Notice that the susceptibility diverges when we approach the ferromagne-
tic point ∆ → −1 because both v and K−1 vanish in this limit (see (6.58)).
In the massive regime, which occurs for ∆ > 1, one obtains the expected
exponential decay for T → 0.
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6.9.3 SU(2) Point via Non-abelian Bosonization

For ∆ = 1 and h = 0, which corresponds to K = 1 (or R = 1/
√

2π) and
〈M〉 = 0 (and hence kF = π/2) one recovers the full SU(2) spin symmetry.
This can be observed e.g. in (6.94, 6.95), since they coincide at this particular
point:

〈Sz
x1
Sz

x2
〉 ≈ − 1

4π2

1
|x1 − x2|2

+ (−1)(x1−x2) a2

|x1 − x2|
(6.104)

〈S+
x1
S−

x2
〉 ≈ b2

|x1 − x2|
+ (−1)(x1−x2) c2

|x1 − x2|
(6.105)

For certain purposes it is more convenient to use non-abelian bosoniza-
tion [28] and rewrite both the low energy Hamiltonian and the continuum
expressions for the spin operators in this new language.

It can be shown that the scalar boson compactified at radius R = 1/
√

2π
is equivalent to the theory describing a SU(2) group valued (matrix) field g
with dynamics given by the Wess-Zumino-Witten (WZW) action [28]

S[g]WZW =
k

8π

∫
d2xtr

(
∂µg∂

µg−1)

+
k

12π

∫
d3yεijktr

(
g−1∂igg

−1∂jgg
−1∂kg

)
. (6.106)

where the trace is taken over the group indices and the so called level k equals
1 in the present case. This theory has been studied in [28] in the context of
the non-Abelian bosonization of fermions and in [29] using conformal field
theory techniques, where e.g. four point correlators were computed. See [30]
for details.

The corresponding Hamiltonian can be written in the Sugawara form
which is quadratic in the SU(2) currents

HWZW =
1

k + 2

∫
dx (JR · JR + JL · JL) (6.107)

where JR,L = tr(σg−1∂z,z̄g) and the spin operators can be compactly written
as

Sx ≈ (JR + JL) + const(−1)xtr(σg) (6.108)

The two formulation are related as follows

g ∝
(

: exp(i
√

2πφ) : : exp(−i
√

2πφ̃) :
− : exp(i

√
2πφ̃) : : exp(−i

√
2πφ) :

)
(6.109)

and
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Jz
R,L = ±∂z,z̄φ

J+
L = : exp(−i

√
8πφL :) , J+

R =: exp(−i
√

8πφR) : . (6.110)

The marginally irrelevant perturbation (6.92) can be written in this language
as the product of left and right handed currents JR · JL.

At this point this (more complicated) formulation may appear unneces-
sary except for the fact that the expressions exhibit the SU(2) invariance
more naturally. However, the description of the S = 1/2 Heisenberg chain
in terms of the level 1 WZW theory is crucial in the study of interacting
systems, such as e.g the two leg Heisenberg ladder in the weak interchain
coupling regime [31,32]. In this case one can exploit the powerful machinery
of CFT in two dimensions to study the low energy dynamics of these systems.
This particular example is discussed in Sect. 9.7.

6.9.4 Modifications of the XXZ Chain

Using the formalism just developed one can study any modification of the
XXZ chain provided that perturbation theory can be safely applied. We
discuss now the case in which the exchange couplings J in the Hamiltonian
(6.56) have a spatial periodicity of two sites (usually called dimerization)
as a sample case, but other perturbations like next-nearest-neighbors, terms
breaking XY symmetry, etc. can be treated similarly.

The Hamiltonian is given by

H latt
XXZ =

∑

n

Jn

(
1
2
(
S+

n S
−
n+1 + S−

n S
+
n+1

)
+∆Sz

nS
z
n+1

)
, (6.111)

where Jn = J(1 + (−1)nδ). For ∆ = 0 we can map it into a model of free
fermions using the Jordan-Wigner tranformation (6.60)

H =
J

2

∑

n

(
(1− δ)(ψ†

2nψ2n+1 +H.c.) + (1 + δ)(ψ†
2n+1ψ2n+2 +H.c.)

)

(6.112)

Defining on even and odd sites the fermions χn = ψ2n and ξn = ψ2n+1
and Fourier transforming, one obtains a two by two Hamiltonian which can
be diagonalized to give

H = J
∑

k

(
E+ ψ

(+)†
−k ψ

(+)
k + E− ψ

(−)†
−k ψ

(−)
k

)
(6.113)

where ψ(+)
k and ψ

(−)
k are defined in terms of the Fourier component of χ and

ξ as

ψ
(+)
k =

(1− δ) + (1 + δ)e−ik

√
2E+

χk +
1√
2
ξk ,

ψ
(−)
k =

(1− δ) + (1 + δ)e−ik

√
2E−

χk +
1√
2
ξk . (6.114)
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We have then two bands of fermions with dispersions given by

E± = ±
√

(1 + δ2 + (1− δ2) cos k)/2 (6.115)

which shows that a half filling there is a gap δ in the spectrum (see Fig. 6.3).
Notice that the momentum k here is twice the momentum we have used in
(6.62), due to the distinction between even and odd sites we made in going
to the new variables χ and ξ.

E(k)

0

π−π k

2δ

Fig. 6.3. Energy bands for the dimerized case.

The same model can be studied using bosonization now for arbitrary ∆
but perturbatively in the dimerization δ. In this scheme one treats the term
Jδ
∑

n(−1)n
( 1

2

(
S+

n S
−
n+1 + S−

n S
+
n+1

)
+∆Sz

nS
z
n+1
)

as a perturbation which
can be written using (6.88), (6.89). It is easy to show that a new term arises,
which is of the form

O(x) = cos
√

2πφ (6.116)

which is relevant and is responsible for the opening of a gap. This operator
could have been predicted by symmetry arguments, since once the translation
symmetry is broken in the lattice, as it happens in the dimerized case, it is
no longer forbidden to appear. This can be seen as follows: translation by one
lattice site x→ x+ 1 implies that the chiral fermions in (6.65) transform as

ψR → eikF ψR, ψL → e−ikF ψL (6.117)

and henceforth, for kF = π/2, the bosonic field is transformed as φ →
φ −

√
π/2. Breaking of this symmetry then allows for a term like (6.116)

to appear, which was otherwise forbidden. In the non Abelian SU(2) formu-
lation, the parity breaking operator is simply given by trg.
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The gap can be estimated by power counting to be of order ≈ δ(1/(2−K/2)).
Note that in the XY case (i.e. for ∆ = 0) K = 2 and we recover the free
fermion result. In the next section we compute the RG equations for this
effective theory.

6.9.5 RG Analysis of the Scalar Field Perturbed
by Vertex Operators

We already used the renormalization group technique when treating the non-
linear sigma model. The case of the scalar bosonic field with a vertex operator
is much simpler. Following [8], the action is given by:

S =
1
2

∫
dx dt

[
1
K

(∂xφ)2 + λ cos(βφ)
]
, (6.118)

where β =
√

2π corresponds to the dimerized case.
The scaling dimension of the operator cos(βφ) is Kβ2

4π and the coupling λ

has then the dimension 2− Kβ2

4π in order to have a dimensionless action.
Imagine now that, as before, we integrate over the fast degrees of freedom

within the momenta shell Λ−δΛ and Λ, or shifting from the scale L to L+δL.
Since λ is a dimensional constant, it has to be rescaled accordingly. Simple
dimensional analysis tells us that:

dλ

dln(L)
=
(

2− Kβ2

4π

)
λ (6.119)

Of course one may anticipate that fluctuations can change this näıve sca-
ling relation but to lowest order in the coupling constant we can keep this
equation for describing the behavior of the system under renormalization
group transformations. This is not, however, the end of the story. Let us
assume that

(
2− Kβ2

4π

)
is small i.e. we are close to the point where λ is mar-

ginal. In the process of integration, we define an effective partition function
which we can define through the formal notation:

Z = Zeff(1− λ

∫
dx dt〈cos(βφ(x, t))〉+

λ2

2

∫
dx1 dx2 dt1 dt2〈cos(βφ(x1, t1)) cos(βφ(x2, t2))〉+ ...) (6.120)

where the integration is taken over scales smaller than δL. The term in pa-
renthesis can then be re-exponentiated and we can define our effective action
in terms of the original one:

Seff = S − λ

∫
dx dt〈cos(βφ(x, t))〉+

λ2

2

∫
dx1 dx2 dt1 dt2〈cos(βφ(x1, t1)) cos(βφ(x2, t2))〉+ ... (6.121)
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We then see that in the process of integrating out the degrees of freedom at
small scales, we can have the merging of two vertex operators separated by
a distance smaller than δL. In this operator product, there is certainly the
term cos(2βφ) which is present and contributes to the renormalization group
equations, but can also be neglected to first order. There is however another
term in the product expansion of the vertex operators:

eiβφ(x)e−iβφ(x+δx) → − β2 (∂uφ)2

|δx|Kβ2
2π −2

+ ... (6.122)

So the constant K gets a correction:

1
Keff

=
1
K

+ λ2β2

L+δL∫

L

d2δx

|δx|2−ε

=
1
K

+
λ2β2

ε
2π((L+ δL)ε − Lε) (6.123)

where ε = 4−Kβ2

2π is supposed to be small. From this result, and from (6.119)
we can write the renormalization group equations to lowest order:

dλ

dln(L)
=
(

2− Kβ2

4π

)
λ+ ...

dK

dln(L)
= −K

2β2

4π
λ2 + ... (6.124)

which are known as the Kosterlitz renormalization group equations. The flow
diagram for these equations is well known [8]. The flow is depicted in Fig. 6.4.
In the vicinity of λ = 0, the line λ = λc(K) =

(
Kβ2

8π − 1
)

separates the
regions of initial conditions that flow to weak coupling and strong coupling
respectively. If K > 8π

β2 and λ < λc(K), the large scale behavior of the
system corresponds to a massless scalar field theory, while elsewhere the
system presents a massive behavior with a finite correlation length.

6.9.6 Charge Degrees of Freedom: Hubbard and t − J Models

The methods described in the previous sections can be extended to study sy-
stems including spin and charge degrees of freedom, provided they are Bethe
ansatz solvable. Such is the case of the Hubbard model which is exactly sol-
vable for arbitrary values of the on-site repulsion U , filling and magnetic
field [33]. The exact solution can then be used to construct a low energy
bosonized effective field theory [34–36] which can then be used to study per-
turbations of this model (see e.g. [14, 37]).

Here we present some aspects of the bosonization description of the Hub-
bard chain and its applications (see [15,16,37] and references therein).
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λ

8π
β2

K

Fig. 6.4. Renormalization Group flow

The Hubbard model describes electrons hopping on a lattice which inter-
act repulsively via an on-site Coulomb energy U with the lattice Hamiltonian
given by

H = −t
∑

n,α

(c†n+1,αcn,α +H.c.) + U
∑

n

c†n,↑cn,↑c
†
n,↓cn,↓

+µ
∑

n

(c†n,↑cn,↑ + c†n,↓cn,↓)−
h

2

∑

n

(c†n,↑cn,↑ − c†n,↓cn,↓) . (6.125)

Here c†n,α and cn,α are electron creation and annihilation operators at site
n, α =↑, ↓ the two spin orientations, h the external magnetic field and µ the
chemical potential. As we already mentioned, this model has been exactly
solved by Bethe Ansatz already in 1968 [33] but it took until 1990 for the
correlation functions to be computed by combining Bethe Ansatz results with
Conformal Field Theory (CFT) techniques [34].

Spin-charge separation is one of the important features of the Hubbard
chain at zero magnetic field. Interestingly, it is no longer spin and charge
degrees of freedom that are separated if an external magnetic field is switched
on [34]. Nevertheless it has been shown that in the presence of a magnetic
field, the spectrum of low energy excitations can be described by a semi-direct
product of two CFT’s with central charges c = 1 [34]. This in turn implies
that the model is still in the universality class of the Tomonaga-Luttinger
(TL) liquid and therefore allows for a bosonization treatment.

We proceed as before by setting U = 0 and writing the fermion operators
as (now we have fermions with spin, and hence the number of equations is
duplicated)
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cn,α → ψα(x) ∼ eikF,αx ψL,α(x) + e−ikF,αx ψR,α(x) + . . . (6.126)

= eikF,αx e−i
√

4πφL,α(x) + e−ikF,αx ei
√

4πφR,α(x) + . . . , (6.127)

where kF,α are the Fermi momenta for up and down spin electrons, which
are related to the filling and the magnetization as

k+ = kF,↑ + kF,↓ = πn ; k− = kF,↑ − kF,↓ = π〈M〉 , (6.128)

The fields φR,L,α are the chiral components of two bosonic fields, which bo-
sonize the spin up and down chiral fermion operators ψR,L,α, as in (6.71).
The dots stand for higher order terms which have to be computed in or-
der to reproduce the correct asymptotics of correlations obtained from the
Bethe Ansatz solution. They take into account the corrections arising from
the curvature of the dispersion relation due to the Coulomb interaction. The
effects of band curvature due to interactions are also present in the case of
the XXZ chain. However, in that case the effects are, for most practical
purposes, negligible, since they lead in general to additional terms in the bo-
sonization formulae which are strongly irrelevant operators. In the present
case, though, these terms can be important since in some cases they could
be relevant and should then be taken into account. For non-zero Hubbard
repulsion U and magnetic field h, the low energy effective Hamiltonian cor-
responding to (6.125) written in terms of the bosonic fields φ↑ and φ↓ has a
complicated form, mixing up and down degrees of freedom [36].

The crucial step to obtain a simpler bosonized Hamiltonian is to consider
the Hamiltonian of a generalized (two component) TL model and identify
the excitations of the latter with the exact Bethe Ansatz ones for the model
(6.125), providing in this way a non-perturbative bosonic representation of
the low energy sector of the full Hamiltonian (6.125). This program has been
carried out in [36] and reviewed in [37].

The fixed point (i.e. neglecting all irrelevant terms) bosonized Hamilto-
nian can be written as

∑

i=c,s

ui

2

∫
dx
[
(∂xφi)

2 + (∂xθi)
2
]
, (6.129)

where φ = φR + φL and θ = φR − φL and the new bosonic fields φc and φs

are related to φ↑ and φ↓ through
(
φc

φs

)
=

1
detZ

(
Zss Zss − Zcs

Zsc Zsc − Zcc

)(
φ↑
φ↓

)
, (6.130)

In these expressions Zij , i, j = c, s, are the entries of the dressed charge
matrix Z taken at the Fermi points

Z =
(
Zcc Zcs

Zsc Zss

)
. (6.131)
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These matrix elements are solutions of a set of coupled integral equations
obtained from the Bethe Ansatz [34] and depend on the Hubbard coupling
U , the chemical potential µ and the magnetic field h. These parameters play
a similar role as that played by K in the case of the XXZ chain.

At zero magnetic field, the matrix Z reduces to

Z(h = 0) =
(

ξ 0
ξ/2 1/

√
2

)
, (6.132)

with ξ = ξ(µ,U). In this case we recover the expressions for the charge and
spin fields for zero magnetic field

φc =
1
ξ

(φ↑ + φ↓) , φs =
1√
2

(φ↑ − φ↓) , (6.133)

where the compactification radius of the spin field (i.e. the parameter which
indicates the period of φs, φs = φs+2πRs, Rs = 1/

√
2π) is fixed by the SU(2)

symmetry of the spin sector (it corresponds to the Luttinger parameter for
the spin sector being Ks = 1). The radius for the charge field, on the other
hand, depends on the chemical potential µ and the Coulomb coupling U .

One very important fact that we already mentioned is that for h = 0 the
charge and spin degrees of freedom are completely decoupled, a phenomenon
which is known as spin-charge separation. In particular, since the velocities
for the two kinds of excitations are different, it is easy to verify that if one
creates a particle (true electron) on the ground state, its constituents (spin
and charge parts) will, after some time, be located in different points in space.

It should be noted that for M �= 0, the fields arising in the diagonalized
form of the bosonic Hamiltonian (6.129) are no longer the charge and spin
fields.

For generic values of the parameters of the model (6.125), we can now
write down for example the bosonized expressions for the charge density
operator and for the z component of the spin operator

ρ(x) = ψ†
↑ψ↑(x) + ψ†

↓ψ↓(x)

=
1√
π
∂x (Zccφc − Zcsφs) + a sin[k+x−

√
π (Zccφc − Zcsφs)]

× cos[k−x−
√
π ((Zcc − 2Zsc)φc − (Zcs − 2Zss)φs)]

+ b sin(2k+x−
√

4π(Zccφc − Zcsφs)) , (6.134)

2Sz = ψ†
↑ψ↑ − ψ†

↓ψ↓ = c ∂x((Zcc − 2Zsc)φc − (Zcs − 2Zss)φs)

+d cos[k+x−
√
π(Zccφc − Zcsφs)]

× sin[k−x−
√
π((Zcc − 2Zsc)φc − (Zcs − 2Zss)φs)]

−e sin[2k−x−
√

4π((Zcc − 2Zsc)φc − (Zcs − 2Zss)φs)] (6.135)
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where a, b, c, d, e are non-universal constants. Other operators can be con-
structed similarly and then correlations can be easily computed following
similar lines as for the XXZ chain.

In the limit of large U , double occupancy will be forbidden and one can
use perturbation theory in t/U to show that this Hamiltonian reduces to the
so called t− J model in this limit which for zero magnetic field reads

Ht−J = −t
∑

n,α

(c†n+1,αcn,α +H.c.) + J
∑

n

Sn · Sn+1 (6.136)

where the operator Sn represents the spin of the electron at site n,

Sn = c†n,α

σαβ

2
cn,β (6.137)

with σ the Pauli matrices and the spin exchange constant is given by J =
t2/U .

In the case of zero field, kF,↑ = kF,↓ = kF , and the expressions for the
charge density and the Sz spin operators are simplified to

ρ(x) =
ξ√
π
∂xφc + a sin(2kFx−

√
π ξφc)× cos(

√
2πφs)

+ b sin(4kFx−
√

4π ξφc) , (6.138)

Sz = c ∂xφs + d cos(2kFx−
√
π ξφc)× cos(

√
2πφs) + e sin(

√
8πφs)

(6.139)

If one works at half-filling, which in this language means one electron per
lattice site and hence kF = π/2, there is an extra operator perturbing the
charge sector which opens a charge gap even for arbitrarily small U . Then
one can integrate out the charge degrees of freedom to recover the S = 1/2
Heisenberg chain studied before, which describes the Mott insulating phase
of the Hubbard model.

After freezing the massive charge degrees of freedom, the spin operator
reads

Sz = c ∂x(φs) + const × (−1)x cos(
√

2πφs) , (6.140)

where const ∝ 〈cos(
√
π ξφc)〉 and we recover the expression in (6.88) for

kF = π/2.
The t− J model is not Bethe Ansatz solvable in general, but only at the

specific point J = 2t where it becomes supersymmetric [38]. At this point one
can follow a similar procedure as described above to construct the bosonized
low energy theory from the Bethe Ansatz solution.
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6.9.7 Two-Leg Heisenberg Ladder

We have seen by using the NLSM approach that one should expect a spin gap
in the spectrum of the two-leg Heisenberg ladder. In the present section we
study the same problem using a different technique which further supports
this conclusion.

We apply the combination of non-abelian bosonization techniques and
the powerful machinery of conformal field theories in two dimensions to the
case of a two leg S = 1/2 Heisenberg antiferromagnetic spin ladder following
[31,32]. This is one of the simplest examples where the combination of these
techniques shows its power by allowing for a complete analysis of the low
energy dynamics.

The Hamiltonian is defined as

H latt
2−leg = J

(
S1

n · S1
n+1 + S2

n · S2
n+1
)

+ J ′S1
n · S2

n, (6.141)

where J, J ′ are the intrachain and interchain couplings respectively. We work
in the weak interchain coupling limit J ′ 
 J , which allows us to apply the
bosonization procedure described in Sect. 9.3 to each of the chains as if they
were decoupled. We then treat the interchain couplings with the aid of (6.108)
in perturbation theory.

The low energy limit Hamiltonian then takes the form

Hcont
2−leg = H1

WZW +H2
WZW + λ1

∫
dx
(
(J1

R + J1
L) · (J2

R + J2
L)
)

+

λ2

∫
dx
(
tr(σg1) · tr(σg2)

)
,(6.142)

where λ1,2 ∝ J ′/J .
The key observation here is that the free theory (J ′ = 0) corresponds to

two SU(2)1 WZW factors and this CFT theory can be conformally embedded
into

SU(2)1 ⊗ SU(2)1 ⊃ SU(2)2 ⊗ Z2 , (6.143)

where SU(2)2 stands for the level 2 WZW theory and Z2 corresponds to the
Ising CFT.

This last equation does not indicate the complete equivalence of the theory
on the r.h.s. with that on the l.h.s. What is true is that both theories have
the same conformal central charge and all the primary fields of the theory
on the l.h.s. are contained in the r.h.s theory. The idea is to try to map all
the interaction terms into the new language, which in fact turns out to be
possible in this case (though it is not generically true).

One can write the interaction terms in (6.142) using this embedding and
the outcome is quite nice, since the two sectors are decoupled from each other,
each of them with their respective mass terms.
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There are two kinds of interaction terms in (6.142), the first being the
current-current terms, which have the effect of renormalizing the effective
Fermi velocity to first order apart from marginal terms. We then have the
more relevant terms which are the product of the two WZW fields.

To study the effect of these relevant terms we use the conformal embed-
ding mentioned above. The first observation is that the product of the WZW
fields in the two SU(2)1 sectors has scaling dimension 1 and should hence be
writable in terms of dimension 1 operators in the Ising and SU(2)2 WZW
sectors. In this way, one obtains the following correspondence

tr(σg1) · tr(σg2) = tr(Φj=1)− 3 ε , (6.144)

which can be proved by comparing the operator product expansions of the
operators on the left and right hand sides. In the above equation, the field
Φj=1 is the spin 1 field in the WZW theory SU(2)2 and ε is the energy
operator in the Ising sector, which can be described by one Majorana fermion.

We can then conclude that the Ising sector, being perturbed by the energy
operator, has a mass m1 proportional to J ′/J .

This theory can be further simplified by noticing that the level 2 SU(2)
WZW theory can be equivalently described as three Majorana fermions. In
this new language, the corresponding interaction term, tr(Φj=1) simply pro-
vides the mass m2 for these Majorana fermions, which is different from m1
and again proportional to J ′/J . The ratio between the masses of the different
Ising sectors has been fixed using Abelian bosonization in [32], showing that
m1/m2 = −3.

The effective Hamiltonian can then be written as

Heff
2−leg = − i

2
(ζR∂xζR − ζL∂xζL)− im1ζRζL

+
3∑

a=1

(
− i

2
(ξa

R∂xξ
a
R − ξa

L∂xξ
a
L)− im2ξ

a
Rξ

a
L

)
, (6.145)

apart from marginal terms coming from the current-current interactions.
A similar result can be obtained using Abelian bosonization as in [32].

Different modifications of the two leg ladder considered here, as the inclusion
of dimerization, extra diagonal couplings between the chains, etc. can be
treated using the same formalism.

6.9.8 Higher Spin Chains: Non-abelian Bosonization

In the case of the Heisenberg antiferromagnet with higher values of the spin S
one can still represent the spin variables in terms of fermions, which now carry
an extra internal (color) index. The generalization of (6.137) for arbitrary S
reads
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Sn =
2S∑

i=1

∑

α,β=↑,↓
c†αin

σαβ

2
cβin, (6.146)

where cαin are fermionic variables with α the spin index, i = 1, ..., 2S the
extra color index and n the site index respectively. As before, σαβ are the
Pauli matrices.

In this case, non-abelian bosonization is more suitable to deal with the low
energy theory. This approach has been first introduced in [39] (see also [40]).
Here we follow the path-integral approach presented in [41], which is more
suitable for our purposes.

In order to correctly represent the spin S chain, the physical states |phys〉
must satisfy at each lattice site the constraints

∑

i

c†αincαin|phys〉 = 2S|phys〉
∑

i,j

c†αinτ
a
ijcαjn|phys〉 = 0, (6.147)

where τa are the generators of the SU(2S) algebra. The first constraint im-
poses the condition that allows only one spin per site, whereas the second
one states that the physical states must be color singlets.

The Heisenberg Hamiltonian (6.56) with spin operators satisfying (6.1)
with ∆ = 1 and h = 0, can then be expressed as

H = −1
2

∑

n

c†αincαjn+1c
†
βjn+1cβin + constant (6.148)

which has a local SU(2S) × U(1) local gauge invariance introduced by the
parametrization (6.146). This quartic interaction can be rewritten by intro-
ducing an auxiliary field B as

H =
1
2

∑

n

(Bij
n,n+1c

†
αincαjn+1 +H.c.+ B̄ji

n+1,nB
ij
n,n+1). (6.149)

To obtain an effective low energy theory we perform a mean field approxi-
mation taking B as a constant 2S × 2S matrix whereafter H can then be
diagonalized. We then introduce the fluctuations around this mean solution,
which we are able to integrate in a path-integral setup.

We write each color fermion as in (6.65)

ψiα(x)√
a

≈ eikF xψL,iα(x) + e−ikF xψR,iα(x) , (6.150)

with kF = π/2 and expand the auxiliary field around its mean field value,
keeping the fluctuations to first order in the lattice spacing, since we are
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interested in the low energy dynamics

Bxy = B0e
aVxy � B0(1 + aVxy), (6.151)

We define the fields A1 ≡ 1
2 (Vxy − V †

xy) and Rxy ≡ 1
2 (Vxy + V †

xy) in the
algebra of U(2S) which are the fluctuation fields which we have to integrate
to obtain the effective low energy partition function. When substituted back
into the Hamiltonian, the expansion (6.151) leads to a quadratic integral in
Rxy which can be performed to give

H = B0

(
−iΨ†

R,iα(δij∂x +A1
ij)ΨR,jα + iΨ†

L,iα(δij∂x +A1
ij)ΨL,jα

)

+
1
4

(
Ψ †

L,iαΨR,jα − Ψ †
R,iαΨL,jα

)2
, (6.152)

where the last term arises from the integration over the R field.
In order to implement the constraints (6.147) we first rewrite them in

the continuum limit using (6.150). In terms of the continuum fermions the
constraints read

Ψ̄iαγ0Ψiα|phys〉 = 2S|phys〉 ,
Ψ̄iαγ0τijΨjα|phys〉 = 0 ,

Ψ̄iαΨjα|phys〉 = 0 for all i, j , (6.153)

where Ψ † = (ΨR, ΨL) and Ψ̄ = Ψ †γ0.
The first two constraints are implemented by introducing a Lagrange mul-

tiplier A0 in the Lie algebra of U(2S), which together with A1 in (6.152)
provide the two space-time components of a gauge field in U(2S). The third
constraint is instead imposed with the use of the identity (see [41] for details)

δ[Ψ̄iαΨjα] = lim
λ2→∞

e−λ2
∫

d2x (Ψ̄iαΨjα)2 . (6.154)

After some algebra, the effective Lagrangian reads

L = Ψ̄γµiDµΨ − λ1(iΨ̄iγ5Ψj)2 − λ2(iΨ̄iΨj)2, (6.155)

where the covariant derivative is defined as Dµ = ∂µ− iaµ +Bµ, and we have
decomposed, for later convenience, the U(2S) Aµ field into a U(1) field aµ

and a SU(2S) field Bµ.
The Lagrangian can be further rewritten as

L = Ψ̄iαγ
µi(∂µ − iaµδijδαβ +Bij

µ δαβ)Ψjβ

+4(λ1 + λ2)JR · JL + (λ1 + λ2)jRjL
−(λ1 − λ2)(Ψ

†
RiαΨLjαΨ

†
RjβΨLiβ +H.c.), (6.156)
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where

JR,L = Ψ †
R,Liα

σαβ

2
ΨR,Liβ

jR,L = iΨ†
R,LiαΨR,Liα (6.157)

are SU(2)2S and U(1) currents respectively.
For λ1 = λ2 = 0 we are left with the theory of 2S Dirac fermions coupled

to gauge fields in U(1) and SU(2S). Since these gauge fields have no dyna-
mics, they act as Lagrange multipliers and it can be shown that the resulting
theory corresponds to the fermionic realization of the coset model [42]

U(2S)
U(1)⊗ SU(2S)2

≡ SU(2)2S (6.158)

as was already observed in [41]. The third term can be absorbed by a redefi-
nition of the U(1) gauge field aµ.

The second and last terms in (6.156) can then be expressed as fields in
the resulting WZW theory SU(2)2S

∆L = (λ1 − λ2)
(
Φ

(1/2)
αβ Φ

(1/2)
βα +H.c.

)
+ 4(λ1 + λ2)JR · JL (6.159)

where we have identified the spin 1/2 primary field of the SU(2)2S WZW
theory, Φ(1/2), in terms of its fermionic constituents

Φ
(1/2)
αβ ≡ Ψ †

R,iαΨL,iβ (6.160)

which has conformal dimensions d = d̄ = 3/(8(S + 1)). The first term in
(6.159) corresponds then to the spin 1 affine primary Φ(1) with conformal
dimensions d = d̄ = 1/(S + 1), as can be seen after some simple algebra.

We can finally write

∆L = −4 (λ1 − λ2) tr Φ(1) + 4(λ1 + λ2)JR · JL (6.161)

For S = 1
2 we recover the effective model we derived in Sect. 9.3. In this

case, the first term in (6.161) is proportional to the identity operator and the
second is marginally irrelevant since λ1 + λ2 is positive and gives the well
known logarithmic corrections to correlators.

For higher spins, we have to consider the interaction term (6.161) and we
also have to include all other terms which are radiatively generated. We then
need the operator product expansion (OPE) coefficients among the different
components of Φ(1) which have been computed in [43]. The OPE coefficients
are non-vanishing if the so called “Fusion Rules” are non-vanishing. In the
level k SU(2) WZW theory they are given by [44]

Φ
(j)
m,m̄ × Φ

(j′)
m′,m̄′ =

min(j+j′,k−j−j′)∑

n=|j−j′|
Φ

(n)
m+m′,m̄+m̄′ (6.162)
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We can now make use of the following equivalence [43,45]

SU(2)k ≡ Zk ⊗ U(1) (6.163)

We will exploit this equivalence to derive an effective low energy action for
the spin S Heisenberg chain. Indeed, it was shown in [43] that the primary
fields of the SU(2)k WZW theory are related to the primaries of the Zk-
parafermion theory and the U(1) vertex operators. They are connected by
the relation

Φ
(j)
m,m̄(z, z̄) = φ

(2j)
2m,2m̄(z, z̄) : e

i√
2S

(mφR(z)+m̄φL(z̄)) :, (6.164)

where the Φ fields are the invariant fields of the SU(2)k WZW theory, the φ
fields are the Zk parafermion primaries and φR and φL are the holomorphic
and antiholomorphic components of a compact massless free boson field. In
the same way, the currents are related as

J+
R (z) = (2S)1/2ψ1(z) : exp

(
i√
2S

φR(z)
)

: ,

Jz
R(z) = (2S)1/2∂zφR(z) (6.165)

where J±
R = Jx

R ± iJy
R and ψ1 is the first parafermionic field. (A similar

relation holds for the left-handed currents).
Using this equivalence we can express the relevant perturbation term

(6.161) in the new language as

∆L = −4(λ1 − λ2)
(
φ

(2)
0,0 + φ

(2)
2,−2 : e

i√
2S

(φR(z)−φL(z̄)) :

+φ(2)
−2,2 : e− i√

2S
(φR(z)−φL(z̄)) :

)

+4S(λ1 + λ2)
(
ψ1ψ̄

†
1 : e

i√
2S

(φR(z)−φL(z̄)) : +H.c.
)
, (6.166)

where we absorbed the derivative part of the U(1) field coming from (6.165)
into a redefinition of the constant in front of the unperturbed Lagrangian.
The first term corresponds to the first “thermal” field of the parafermion
theory, φ(2)

0,0 = ε1, with conformal dimensions d = d̄ = 1/(1 + S), while the
second and third terms correspond to the p = 2 disorder operator in the PF
theory, φ(2)

2,−2 = µ2 and its adjoint φ(2)
−2,2 = µ†

2 with dimensions d2 = d̄2 =
(S−1)/(2S(S+1)). It is assumed that all the operators which are radiatively
generated have to be included in the complete effective theory.

We use now the fact that the Z2S PF theory perturbed by its first ther-
mal operator ε1 flows into a massive regime irrespectively of the sign of the
coupling [46]. Assuming that, as for the Z2 case, due to the sign of the cou-
pling λ1 − λ2 in (6.166) the theory is driven into a low temperature ordered
phase, we have that vacuum expectation values (v.e.v.’s) of disorder operators
µj , vanish for j �= 2S mod(2S) as well as v.e.v.’s of the parafermionic fields
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〈ψkψ̄
†
k〉 = 0, for 2k �= 2S mod(2S). This will be important in the computation

of spin-spin correlation functions below.
Since the parafermionic sector is massive, the effective theory for large

scales can be obtained by integrating out these degrees of freedom. One can
obtain then the most general effective action for the remaining U(1) field, by
including all the vertex operators which are invariant under the symmetry
Z2S × Z̃2S [43]

φR → φR −
√

2πm√
S

; φL → φL −
√

2πn√
S

(6.167)

with m,n ∈ Z, which is preserved after the integration of the massive par-
afermions.

One obtains in this way the effective action for the remaining U(1) theory

Zeff =
∫

dφ exp
(
−
∫

KS(∂µφ)2+

αS

∫
cos(

√
S

2
(φR − φL)) + βS

∫
cos(

√
2S(φR − φL)) + · · ·

)
,

(6.168)

for S integer while αS vanishes for S half integer. Here the dots indicate
irrelevant fields corresponding to higher harmonics of the scalar field and KS

is an effective constant arising from the OPE of vertex and parafermionic
operators in the process of integration of the massive degrees of freedom.

Using the generalization of (6.65) to the case with 2S colors together
with (6.146), (6.157) and (6.160) we can write the continuum expression of
the original spin operator S(x) as

S(x) = JR + JL + const (−1)xtr(
σ

2
(Φ(1/2) + Φ(1/2)†)) , (6.169)

which is the generalization of (6.108) for arbitrary spin S.
Let us study the behavior of the spin-spin correlation function at large

scales, to see whether the system has a gap or not. In the new language of
(6.169), these correlators have a staggered and a non-staggered part which
correspond respectively to current-current correlators and correlators of the
components of the fundamental field Φ(1/2).

Let us focus on the staggered part of the SzSz correlator: Since our ori-
ginal SU(2) WZW model is perturbed, correlation functions of the funda-
mental field will contain supplementary operators coming from the OPE of
the product of Φ(1/2) and the perturbing fields. With the help of the fu-
sion rules (6.162) it is easy to see that, for example, the effective alternating
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z-component of the spin operator containing the scalar field will be given by:

∑

k≤2S, k odd

ak µk : e
ik

2
√

2S
(φR(z)−φL(z̄)) : +H.c., (6.170)

where only odd k fields appear in the sum.
For S half-integer, the operator Φ(S) is present in (6.170), and we can

easily check that, (since µ2S corresponds to the identity), this operator is
simply given by

e
iS√
2S

(φR−φL) +H.c.

The other operators in the series contain parafermionic disorder operators
whose correlators will decay exponentially to zero at large scales. Thus, con-
sidering only the Gaussian part of (6.168), we can show that the spin corre-
lation functions at large scales behave like:

〈Sz(x)Sz(y)〉 ∼ (−1)(x−y)|x− y|−2SKS

〈S+(x)S−(y)〉 ∼ (−1)(x−y)|x− y|−1/(2SKS) (6.171)

The fact that the SU(2) symmetry is unbroken at all scales fixes then the
value of KS to be

KS = 1/(2S) (6.172)

For this value of KS one can show that the perturbing operator with coupling
βS in (6.168) is marginally irrelevant (remember that αS = 0 in the half-
integer case).

We conclude then that the large scale behavior of half-integer spin chains
is given by the level 1 SU(2) WZW model with logarithmic corrections as for
the spin 1/2 chain.

Let us consider now integer spins S. Since the series (6.170) for the ef-
fective spin operator contains only half-integer spins j (odd k’s), all the ope-
rators in the series will contain non-trivial parafermionic operators. Then
all the terms in the spin-spin correlation function will decay exponentially
to zero with the distance indicating the presence of a gap in the excitation
spectrum, thus confirming Haldane’s conjecture.

6.9.9 N-Leg Ladders in a Magnetic Field:
Gap for Non-zero Magnetization

Another interesting situation is the one of antiferromagnetic spin ladders
which we have already studied in Sect. 7 using NLSM techniques in the SU(2)
symmetric case. The Hamiltonian for coupled XXZ chains in the presence
of a magnetic field is a generalization of that presented in (6.141) [18]
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H latt
N−ladder =

N∑

a=1

H
(a)
XXZ + J ′

a=N∑

n,a=1

Sa
n · Sa+1

n − h
∑

i,n

Sa,z
n , (6.173)

where H
(a)
XXZ is given by an expression like (6.56) for each chain labeled by

a.
For J ′ = 0 one can map the low energy sector of each XXZ chain into

a bosonic field theory as described in Sect. 9. One obtains in this way an
effective description which consists in a collection of identical Hamiltonians
like (6.57), with N bosonic fields, φa, describing the low energy dynamics of
chain a, a = 1, · · · , N . The interchain exchanges give rise to perturbation
terms which couple the fields of the different chains.

In the case in which many chains are considered, one has to introduce as
many different Klein factors as the number of chains considered for both right
and left components, ηa

R, ηa
L, a = 1, ..., N , to ensure the correct commutation

relations between spin fields (see (6.71) for the case of a single chain). In
the present case, the interactions contain generically products of four Klein
factors of the form

tijkl ≡ ηiηjηkηl (6.174)

where the subindices here indicate the pair index (α, a), with α = R,L and a
the chain index. One can easily show using the Klein algebra, {ηi, ηj} = 2δij ,
that t2 = 1 when all indices are different and then these operators have
eigenvalues ±1. As discussed in [15], one could get rid of the t operators
which appear in the interaction terms (and hence bosonize completely the
problem) provided one can simultaneously diagonalize all the operators like
(6.174) appearing in a given situation. This in turn can be done if all these
operators are mutually commuting, which has to be studied for each case
separately. In the present situation this can be easily shown by noticing that
interchain interactions between a and b chains contain products of the form

ηa
Rη

a
Lη

b
Rη

b
L (6.175)

with a �= b, a, b = 1, ..., N and using the algebra of the Klein factors one can
show that they are all mutually commuting.

After a careful RG analysis, one can show that at most one degree of
freedom, given by the combination of fields φD =

∑
a φa, remains massless.

The large scale effective action for the ladder systems is then given again by
a Hamiltonian (6.57) for φD and the perturbation term

Hpert = λ

∫
dx cos(2NkFx+

√
2πφD) , (6.176)

where kF = (1 + 〈M〉)π/2 is related to the total magnetization 〈M〉.
The key point if to identify the values of the magnetization for which

the perturbation operator (6.176) can play an important rôle. In fact, this
operator is commensurate at values of the magnetization given by



6 Field-Theoretical Methods in Quantum Magnetism 299

N/2(1− 〈M〉) ∈ Z , (6.177)

otherwise the integral over x will make this term vanish due to the fast
oscillations of the phase factor since the continuum fields are slowly varying.

If this operator turns out to be also relevant in the RG sense (this depends
on the parameters of the effective Hamiltonian (6.57), the model will have a
finite gap, implying a plateau in the magnetization curve.

Let us see how this condition can be obtained: in the weak-coupling limit
along the rungs, J ′ 
 J , the bosonized low-energy effective Hamiltonian for
the N -leg ladder reads

Hcont
N−ladder =

∫
dx

[
1
2

N∑

a=1

(
vaKa

(
∂xφ̃a(x)

)2
+

va

Ka
(∂xφa(x))2

)

+λ1

∑

a,b

(∂xφa(x)) (∂xφb(x))

+
∑

a,b

{
λ2 : cos(2(ka

F + kb
F )x+

√
2π(φa + φb)) : (6.178)

+λ3 : cos
(
2(ka

F − kb
F )x+

√
2π(φa − φb)

)
: +λ4 : cos

(√
2π(φ̃a − φ̃b)

)
:
}]

,

where only the most relevant perturbation terms are kept. The four coupling
constants λi essentially correspond to the coupling J ′ between the chains:
λi ∼ J ′/J . In arriving to the Hamiltonian (6.178) we have discarded a con-
stant term and absorbed a term linear in the derivatives of the free bosons
into a redefinition of the applied magnetic field. For simplicity we have used
here periodic boundary conditions (PBC’s) along the transverse direction.

Note that the λ2 and λ3 perturbation terms contain an explicit depen-
dence on the position (in the latter case this x-dependence disappears for
symmetric configurations with equal ki

F ). Such operators survive in passing
from the lattice to the continuum model, assuming that the fields vary slo-
wly, only when they are commensurate. In particular, the λ2 term appears
in the continuum limit only if the oscillating factor exp(i2x(ki

F +kj
F )) equals

unity. If the configuration is symmetric, this in turn happens only for zero
magnetization (apart from the trivial case of saturation).

Let us describe this in some detail for the case of the three leg ladder,
N = 3. In this case we first diagonalize the Gaussian (derivative) part of the
Hamiltonian by the following change of variables in the fields:

ψ1 =
1√
2

(φ1 − φ3) , ψ2 =
1√
6

(φ1 + φ3 − 2φ2) , ψD =
1√
3

(φ1 + φ2 + φ3) .

(6.179)

In terms of these fields the derivative part of the Hamiltonian can be written
as:
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H̄der. =
vK

2

∫
dx
[
(1 + a) (∂xψD(x))2 + (1− b)

(
(∂xψ1(x))2 + (∂xψ2(x))2

)]

(6.180)

where a = J ′K/J = 2b. We can now study the large-scale behaviour of
the effective Hamiltonian (6.178) where we assume all ki

F equal due to the
symmetry of the chosen configuration of couplings. Let us first consider the
case when the magnetization 〈M〉 is non-zero. In this case only the λ3 and
λ4 terms are present. The one-loop RG equations are:

dK

d ln (L)
= −2K2 λ2

3 + 2λ2
4

dλ3

d ln (L)
=
(

2− K

(1− b)

)
λ3 − πλ2

3

dλ4

d ln (L)
=
(

2− (1− b)
K

)
λ4 − πλ2

4 . (6.181)

It is important to notice that only the fields ψ1 and ψ2 enter in these RG
equations, since the perturbing operators do not contain the field ψD. The
behaviour of these RG equations depends on the value of K. The main point
is that always one of the two λ perturbation terms will dominate and the
corresponding cosine operator tends to order the associated fields. This gives
a finite correlation length in correlation functions containing the fields ψ1 and
ψ2 (or their duals). For example, for∆ ≤ 1 we have thatK > 1 since 〈M〉 �= 0.
Then, from (6.181) one can easily see that the dominant term will be the λ4
one. This term orders the dual fields associated with ψ1 and ψ2. Then, the
correlation functions involving these last fields decay exponentially to zero.
In either case, the field ψD remains massless. In the case of open boundary
conditions the situation is similar and again it is the diagonal field the one
which stays generically massless, in spite of the asymmetry of the Gaussian
part of the action.

A more careful analysis of the original Hamiltonian shows that this dia-
gonal field will be coupled to the massive ones only through very irrelevant
operators giving rise to a renormalization of its Luttinger parameter K. Ho-
wever, due to the strong irrelevance of such coupling terms these corrections
to K are expected to be small, implying that its large-scale effective value
stays close to the zero-loop result.

At the values of the magnetization where this operator is commensurate,
the field ψD can then undergo a K-T transition to a massive phase, indicating
the presence of a plateau in the magnetization curve. An estimate of the value
of J ′ at which this operator becomes relevant can be obtained from its scaling
dimension. In the zero-loop approximation and for ∆ = 1 one then obtains
J ′

c ≈ 0.09J for the 〈M〉 = 1/3 plateau at N = 3.
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Appendix: The Scalar Boson in 2D,
a c = 1 Conformal Field Theory

Primary Field Content and Correlators

The action for the scalar Euclidean boson is

S(φ) =
g

2

∫
d2x (∂µφ)2 (6.182)

and in condensed matter applications g is related to the Luttinger parameter
as g = 1/K and hence contains the information about the interactions.

This action is invariant under constant translations of the field

φ(x) → φ′(x) = φ(x) + α , (6.183)

with the corresponding conserved current Jµ(x) = ∂µφ(x). There exists ano-
ther (trivially) conserved current J̃µ(x) = ενµ∂νφ(x) (usually referred to as
“topological” current).

The corresponding Hamiltonian reads

H =
1
2

∫
dx

(
1
g
Π(x)2 + g (∂xφ)2

)
, (6.184)

where the wave propagation velocity has been set to 1 and the canonical
conjugate momentum Π ≡ δL/δφ̇ = gφ̇. The dual field φ̃ which is usually
defined for convenience, since it allows to write certain fields in a local way,
is related to Π as ∂xφ̃ = Π. One can eliminate g from (6.184) by making a
canonical transformation

φ′ =
√
gφ , Π ′ =

1
√
g
Π . (6.185)

The propagator is then given by

∆(z, z̄;w, w̄) ≡ 〈0|φ′(z, z̄)φ′(w, w̄)|0〉 = − 1
4π

logm2|z − w|2 (6.186)

where z = vτ + ix, z̄ = vτ − ix and m is a small mass which has been added
as an infrared regulator. Ultraviolet divergences are naturally regulated in
the problems we will be interested in by the lattice constant a. We will drop
the primes in the scalar fields from now on, but the reader should keep in
mind (6.185).

From this correlator one can read the chiral parts (φ(z, z̄) = φR(z) +
φL(z̄))

〈φR(z)φR(w)〉 = − 1
4π

logm(z − w) (6.187)
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and

〈φL(z̄)φL(w̄)〉 = − 1
4π

logm(z̄ − w̄) . (6.188)

In terms of the chiral components the dual field reads φ̃ = φR(z)− φL(z̄).
Taking derivatives from (6.187) one obtains

〈∂zφR(z)∂wφR(w)〉 = − 1
4π

1
(m(z − w))2

(6.189)

and similarly for the anti-holomorphic components.
The energy-momentum tensor for the free massless boson is

Tµν =:
(
∂µφ∂νφ−

1
2
ηµν∂ρφ∂ρφ

)
: , (6.190)

where the dots : : denote normal ordering defined by substracting the
singular part of the product when the arguments coincide.

Its holomorphic component reads

T ≡ −2πTzz = −2π : ∂φR∂φR := lim
z→w

(∂φR(z)∂φR(w)− 〈∂φR(z)∂φR(w)〉)
(6.191)

and similarly for the anti-holomorphic component T̄ (z̄).
The two point correlators of the energy-momentum tensor components

can be easily computed using (6.189) and (6.191) to give

〈T (z) T (w)〉 =
c/2

(m(z − w))4
, 〈T̄ (z̄) T̄ (w̄)〉 =

c/2
(m(z̄ − w̄))4

, (6.192)

with the numerical constant c = 1. These expressions define the central charge
of the model. Indeed, it can be shown that the modes of the energy momentum
tensor components T and T̄ satisfy respective Virasoro algebras with central
charge c = 1.

One usually defines vertex operators in terms of the chiral components of
the field φ as

Vα,ᾱ(z, z̄) =: exp (iαφR(z) + iᾱφL(z̄)) :=

: exp
(
i
(α+ ᾱ)

2
φ(z, z̄) + i

(α− ᾱ)
2

φ̃(z, z̄)
)

: , (6.193)

for arbitrary real numbers α and ᾱ, where normal ordering is defined as usual
and for the vertex operators we can write

: eiαφ : ≡ eiαφcreation eiαφannihilation (6.194)
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Their two-point functions are readily evaluated to give

〈
Vα,ᾱ(z, z̄)V †

α,ᾱ(w, w̄)
〉

=
1

(m(z − w))
α2
4π (m(z̄ − w̄))

ᾱ2
4π

. (6.195)

Since this expression is infrared divergent, one has to renormalize the vertex
operators in order to make their correlators IR finite

Vα,α(z, z̄)|ren ≡ m
α2
4π : e(iαφ(z,z̄)) : (6.196)

From (6.195) one can read off the conformal dimensions d and d̄ of Vα,ᾱ

d =
α2

8π
d̄ =

ᾱ2

8π
. (6.197)

The scaling dimension ∆ and the conformal spin S are defined as D = d+ d̄
and S = d − d̄ respectively. Below we will see how the restriction on the
conformal spin to be integer or half-integer restricts the possible values of α
and ᾱ.

Multipoint correlators are also easily evaluated and the general result is
(for simplicity we take αi = ᾱi)

〈
N∏

i=1

Vαi,αi(zi, z̄i)

〉∣∣∣∣∣
ren

=
∏

i<j

|zi − zj |
αiαj
2π , if

N∑

i=1

αi = 0 , (6.198)

and zero otherwise.
The neutrality condition

∑N
i=1 αi = 0 is necessary for the cancellation of

the renormalization constants. Otherwise the result vanishes in the zero mass
limit.

Compactified Free Boson

So far we have not imposed any condition on the bosonic variable φ. However,
in many applications in condensed matter systems, like in the XXZ chain
(see discussion below (6.81)), the bosonic variable is constrained to live on
a circle of radius R (usually called “compactification radius”), i.e. φ and
φ+ 2πR are identified at each space-time point. This condition restricts the
allowed values for the charges α to integer multiples of 1/R in order for the
operators to be well defined. If one further imposes that the conformal spins
have to be integers (to ensure single-valuedness of correlators) then the dual
field φ̃ is compactified with R̃ = 1

2πgR and the allowed charges are restricted
to the set

{(α, ᾱ)} = {(n/R + 2πgmR, n/R− 2πgmR), n,m ε Z} (6.199)



304 D.C. Cabra and P. Pujol

which correpond to fields with conformal dimensions

hn,m = 2πg
(

n

4πgR
+

1
2
mR

)2

, h̄n,m = 2πg
(

n

4πgR
− 1

2
mR

)2

.

(6.200)

Notice that the theory is dual under the transformation R↔ 1
2πgR , which

amounts to the interchange of the so called electric and magnetic charges
(respectively n and m in (6.200)).
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Abstract. The Coupled Cluster Method (CCM) is one of the most powerful and
universally applied techniques of quantum many-body theory. In particular, it has
been used extensively in order to investigate many types of lattice quantum spin sy-
stem at zero temperature. The ground- and excited-state properties of these systems
may now be determined routinely to great accuracy. In this Chapter we present an
overview of the CCM formalism and we describe how the CCM is applied in de-
tail. We illustrate the power and versatility of the method by presenting results for
four different spin models. These are, namely, the XXZ model, a Heisenberg model
with bonds of differing strengths on the square lattice, a model which interpola-
tes between the Kagomé- and triangular-lattice antiferromagnets, and a frustrated
ferrimagnetic spin system on the square lattice. We consider the ground-state pro-
perties of all of these systems and we present accurate results for the excitation
energies of the spin-half square-lattice XXZ model. We utilise an “extended” SUB2
approximation scheme, and we demonstrate how this approximation may be solved
exactly by using Fourier transform methods or, alternatively, by determining and
solving the SUB2-m problem. We also present the results of “localised” approxi-
mation schemes called the LSUBm or SUBm-m schemes. We note that we must
utilise computational techniques in order to solve these localised approximation
schemes to “high order.” We show that we are able to determine the positions of
quantum phase transitions with much accuracy, and we demonstrate that we are
able to determine their quantum criticality by using the CCM in conjunction with
the coherent anomaly method (CAM). Also, we illustrate that the CCM may be
used in order to determine the “nodal surfaces” of lattice quantum spin systems.
Finally, we show how connections to cumulant series expansions may be made by
determining the perturbation series of a spin-half triangular-lattice antiferromagnet
using the CCM at various levels of LSUBm approximation.

7.1 Introduction

Key experimental observations in fields such as superfluidity, superconduc-
tivity, nuclear structure, quantum chemistry, quantum magnetism and stron-
gly correlated electronic systems have often implied that the strong quantum
correlations inherent in these systems should be fully included, at least con-
ceptually, in any theoretical calculations that aim fully to describe their basic

D.J.J. Farnell and R.F. Bishop, The Coupled Cluster Method Applied to Quantum Magnetism,
Lect. Notes Phys. 645, 307–348 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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properties. Until fairly recently a common problem in many of these fields has
been that the “conceptual school” of quantum many-body theory (QMBT)
has been rather divorced from the “quantitative school” of fully microscopic
QMBT. In this context the conceptual school typically simplifies the original,
fundamental theoretical model to a more tractable one. This is done either
by replacing the original Hamiltonian with a simpler or effective one that
still implies or includes the most important of the observed features, and/or
by postulating that these key features can be captured via an (approximate)
wave function with specific inbuilt correlations. The BCS state for supercon-
ductors is a typical example of the latter. By contrast, the quantitative school
attempts to solve the original quantum many-body problem as accurately as
possible. Nowadays the boundaries between the two schools are becoming in-
creasingly blurred for several important reasons. Thus, on one hand, many of
the most interesting problems, such as high- temperature superconductivity,
are so difficult that neither school can present convincing solutions. On the
other hand, the techniques now available in the field of ab initio QMBT have
become increasingly refined over the last 15 years or so, and have also become
more accessible to a wider group of researchers who can utilise the experience
and expertise built up in other fields of application.

Ab initio techniques of microscopic QMBT are, at their best, designed
to include the important effects of quantum correlations in an unbiased and
systematic manner. In particular, over the last decade or so, some of the
QMBT tools that have proven to be versatile in describing very accurately
a wide range of both finite and extended systems of interest in physics and
chemistry, and which are defined in continuous space, have begun to be ap-
plied to quantum lattice systems. They are now beginning to provide unified
treatments of such systems, which can not only compete, for example, with
other much more computationally intensive stochastic simulations, but can
also provide an almost unique means to study in a systematic and unbiased
manner the physically interesting (zero-temperature) quantum phase transi-
tions that many such quantum lattice systems display in abundant variety.
At the same time the conceptual school of QMBT can often provide a good
starting point for the quantitative school, as we shall see in more detail be-
low, in the form of “model” reference states that become the starting or
zeroth-order approximations on top of which further many-body correlations
can be systematically included within well-defined hierarchical approximation
schemes.

Foremost among the most versatile techniques in the modern arsenal of
QMBT are those such as quantum Monte Carlo (QMC) methods [1–4] the
correlated basis function (CBF) method [5–15] and the coupled cluster me-
thod (CCM) [16–24], on the last of which we concentrate in this Chapter.
The latter two methods are undoubtedly the most powerful and most uni-
versally applicable of all fully microscopic techniques presently available for
ab initio calculations in QMBT. Each of the above methods has its own par-
ticular strengths and weaknesses, as we discuss in more detail below. Before
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doing so, however, we first give a short overview of the CBF method since, for
reasons discussed more fully below, we shall concentrate our main attention
hereafter on the CCM.

The most common, and perhaps the simplest, of the variational methods
in QMBT are based on trial wave functions of the (Bijl-Dingle-)Jastrow
form [25]. Early calculations of this sort relied on various cluster expan-
sions of the ensuing approximate matrix elements [25–27]. It was realised
later that these variational approaches may also be formulated diagramma-
tically [28]. This feature has been of considerable help in the construction of
such powerful approximations as the Percus-Yevick and hypernetted chain
(HNC) summations and their variants, which have their origins in the clas-
sical theory of liquids and which have been adapted for both bosonic and
fermionic systems [7, 29]. The review article by Clark [8] gives a good over-
view of the variational theory sketched above as applied to extended nuclear
matter. The interested reader is also referred to [30].

Two basic flaws mar the above variational approaches. Firstly, the parti-
cular partial summations of the graphs considered by such approximations as
the HNC approach destroy one of the most attractive features of variational
techniques, namely that they yield upper bounds to the exact ground-state
energy. Secondly, even a complete summation of graphs (or a variational
Monte Carlo evaluation of the corresponding expectation values) for a given
trial wave function (of Jastrow type, for example) gives only the exact va-
riational result and not the true ground state. This latter deficiency may be
remedied by the inclusion of more general state-dependent correlations and
higher-order correlation functions of the Feenberg type. Alternatively, and
more generally, one may extend the Jastrow wave function to a complete set
of correlated basis functions, which is the CBF approach.

The CBF method was introduced some 45 years ago by Feenberg and
his collaborators [5–7], and was later developed largely by Clark and his
collaborators [8–11]. Introductory surveys of the method are given in [12–15].
We simply note here that the CBF method has as its central ingredient the
direct incorporation of the most important interparticle correlations into the
approximate wave functions on which the microscopic description is based. At
its simplest level the method only involves a single configuration, and hence
reduces to ordinary variational theory. This further reduces to Jastrow theory
if the simplest reasonable choice of correlation operator is made in terms of
the usual symmetric product over all pairs in the system of state-independent
two-body correlation functions.

Since we shall be dealing extensively with applications of the CCM in
this Chapter, we postpone a comparable introduction of it until Sec. 1.2, and
before doing so we return to a review of the relative merits and weaknesses
of the QMC, CBF and CCM approaches to QMBT. We first note that QMC
techniques are severely restricted in the choice of problems to which they
can readily be applied by the infamous “sign problem” [31, 32], which arises
whenever we have a lack of prior knowledge of the nodal surface of the many-
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body wave function under discussion. For spin systems on a regular lattice it
is often related to the occurrence of (strong) frustration. Conversely, it can
only readily be circumvented when we have such prior knowledge via, for
example, the Marshall-Peierls sign rule [33], or some such analogous relation.
Nevertheless, QMC numerical results for spin-lattice systems often provide
the benchmark for other methods for the cases in which the technique can
be applied, especially for lattices in two or more spatial dimensions. We note
in passing that for the special case of one spatial dimension (i.e., chains) the
methods of choice usually include exact solutions when available [34–37], the
density matrix renormalisation group (DMRG) method [38], and techniques
from quantum field theory [39].

By contrast, the CBF method is not limited in the range of systems
to which it can be applied by the presence of strong (geometric or dyna-
mic) frustration. However, its applications up till now have been restricted in
practice to a very limited number of spin-lattice systems (namely, the trans-
verse Ising model [40–43] and the XY model [44]. We note that part of the
reason for this limited usage of the method for problems in quantum ma-
gnetism lies in the fact that, in practical calculations, it is often difficult to
include correlations beyond the two-body level in the Jastrow-Feenberg trial
states. Such higher-order correlations are often important for very accurate
calculations.

By further contrast, the CCM is limited neither by the presence of frustra-
tion in the system nor to the inclusion of only two-body correlations. As we
shall see later, the inclusion of many-body correlations between spins up to
about the 8-body level or so is nowadays quite routine. It is important to note
that the Goldstone linked-cluster theorem is explicitly obeyed by the CCM
at any level of approximate implementation, and hence results may always
be determined directly from the outset in the infinite-lattice limit, N → ∞
(where N is the number of spins in the system). This is in sharp contrast
to the QMC results that are always obtained for finite-sized lattices, from
which the results for the infinite lattice need to be extrapolated using finite-
size scaling arguments. Furthermore, the very important Hellmann-Feynman
theorem is also obeyed by the CCM at all levels of approximation. On the
other hand, we note that in order to retain all of these useful and important
features, it turns out to be necessary to relax the condition that the cor-
responding bra- and ket-states are manifestly Hermitian conjugates of one
another. At a given level of truncation, this Hermiticity property may be
only approximately obeyed, although it is certainly restored in the exact li-
mit. As we shall see, a consequence is that we lose the property in the CCM
that the results for the ground-state energy form an upper bound to the
true results. In practice this lack of manifest Hermiticity poses few actual
problems. Indeed, it can often be used as an internal quality check on the
accuracy of the method. Finally, we note that the CCM lends itself extremely
well for applications on the lattice to the use of computer-algebraic techni-
ques both to derive and to solve the fundamental sets of coupled nonlinear
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equations that lie at its heart in practical implementations, via well-defined
hierarchies of approximations.

In the rest of this Chapter we will focus attention only on spin-lattice
applications of the CCM, for reasons already cited. Nevertheless, we believe
that the CBF method still has a worthy future in this field. We hope that
others will still develop it further, since it certainly shares many highly desira-
ble features with the CCM. Before concentrating in the rest of this Chapter
solely on the CCM, we take a final opportunity to list some of the more
important of these features below:

• Both methods are extremely versatile, and they have been extensively
tested. There is by now a large amount of experience in using them.

• An impressively wide range of applications to systems of physical inte-
rest has been made of one and/or the other method. These include finite
nuclei; nuclear matter; quantum field theory (including systems of anhar-
monic oscillators, φ4 field theory, and pion-nucleon field theory); atoms
and molecules of interest in quantum chemistry; the electron gas; quan-
tum hydrodynamics; and the liquids helium (including bulk 3He and 4He
and their mixtures, and films).

• Both methods are capable of very high accuracy at attainable levels of
implementation. In most applications the CBF and/or CCM results are
either the best or among the best from all available microscopic techni-
ques. They are now often at the point of being fully competitive with the
large-scale QMC simulations in the cases where the latter can be perfor-
med.

• Neither method is restricted in principle to particular forms of the Hamil-
tonian. Both are easily capable of handling very complicated interactions.

• Both the CBF method and the CCM are intrinsically nonperturbative
in nature. Some correlations are retained to infinite order, even at the
lowest levels of implementation. The CCM, in particular, can often be used
to derive (or reconstruct) perturbation theory (PT) series, by a suitable
choice of truncation hierarchy for the subsets of terms retained in the
multiconfigurational expansions of the ground- or excited-state correlation
operators, as described more fully below. In such cases, the CCM provides
a natural analytic continuation of the PT series, which in practice is
usually found to be valid far outside the radius of convergence of the PT
series, and also to be quantitatively superior to such alternative schemes
as (generalised) Padé resummations.

• Although nonperturbative in principle, the CCM can be easily related
to the Goldstone diagram expansions of time-independent perturbation
theory. This feature facilitates comparisons with other methods.

• Similarly, at the optimised Jastrow level implemented via the HNC ap-
proximation, the CBF method has been shown [45] to be equivalent to
two-body localised parquet theory, and hence to a sum of planar Feynman
diagrams of time-dependent perturbation theory.
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• In both methods one may work from the outset in the bulk thermodyna-
mic limit, N → ∞, thereby avoiding problems connected with finite-size
effects. This is always done in the CCM, although, for technical reasons,
it is not always practicable in the CBF case.

• Both methods have the virtue of great flexibility. One may choose “uncor-
related” or “model” ground-state reference states, for example, in many
ways. In particular, this presents an opportunity for the “conceptual
school” of many-body theory to provide a good starting-point for the
“quantitative school.” Similarly, many different approximation hierarchies
for the correlation operators of the CBF and CCM schemes can be envisa-
ged, and there is again room for external experience or physical intuition
to be utilised in their choice.

• Both methods are capable of handling phase transitions. Even when the
“uncorrelated” or “model” reference state is a poor choice, both the CBF
and CCM schemes have been shown in particular cases to be able to
predict phase changes. In the case of the CCM we discuss this in more
detail below.

• Both methods, but particularly the CCM, often have the practical capa-
bility of implementation to high orders of approximation. The CCM has
especially been shown to be very amenable to the use of computer alge-
bra to derive the high-order basic coupled sets of nonlinear equations that
underpin it. This feature is particularly marked for lattice systems, and it
is a key reason why the CCM is now proving to be fully competitive with
large-scale QMC stochastic simulations at a fraction of the computing
cost, in those cases where the latter can be performed.

For further details of the CBF method and some of its applications to
various quantum lattice systems, the interested reader is referred to the over-
view in [46], where comparisons are also made with the CCM.

Henceforth we confine our attention to the CCM, whose applications over
the last ten or so years to quantum magnetic systems at zero tempera-
ture [47–68] have proven to be extremely successful. In particular, the use
of computer-algebraic implementations of the CCM for quantum systems of
large or infinite numbers of particles has largely been pioneered with res-
pect to these spin-lattice problems. We note too in this context that there
have been subsequent applications of these highly accurate computational
CCM techniques to other types of lattice quantum systems, such as U(1) and
SU(N) lattice gauge field theory [69–71], and the latticised O(N) nonlinear
sigma model of relevance to chiral meson field theory [72].

In the remainder of this Chapter we firstly give a brief description of the
CCM formalism. We then describe four specific applications of the method
to various spin-lattice systems at zero temperature. The first application is
to the unfrustrated spin-half XXZ model (or anisotropic Heisenberg model)
on the linear chain and on the bipartite square lattice. This simple model
serves both to illustrate how the method may be applied in practice and
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to indicate the quality of the results attainable at practical levels of imple-
mentation. By contrast to this simple model, frustrated systems generally
are both more difficult to deal with and have richer phase diagrams, which
contain phases of novel forms of order. Three such strongly frustrated sy-
stems are then considered. The first of these, the so-called J-J ′ model, is a
spin-half Heisenberg model on the square lattice with two different, compe-
ting nearest- neighbour couplings with different bond strengths arranged in
a regular zigzag pattern. For the case where the bond strengths have dif-
ferent signs the square plaquettes are thus dynamically frustrated, whereas
when the bond strengths have the same sign the model exhibits competition
(between magnetic order and dimerisation) without frustration. The third
model exhibits geometric frustration, and is again a spin-half Heisenberg mo-
del that interpolates smoothly between a triangular lattice and a Kagomé
lattice. The last model considered is another model that includes the possi-
bility of dynamical frustration, in which we have both nearest-neighbour and
next- nearest-neighbour Heisenberg interactions with unequal strengths. Fur-
thermore, the model is taken to represent a spin-half/spin-one ferrimagnet in
which one sublattice of the bipartite square lattice is populated entirely with
spin-one spins, while the other sublattice is populated entirely with spin-half
spins. The Chapter is concluded with a discussion of the implications of these
illustrative results for further work, and with some ideas for future extensions
and applications of the CCM.

7.2 The CCM Formalism

A brief description of the normal coupled cluster method (NCCM) formalism
is now provided, although the interested reader is referred to [16–24, 47–68].
for further details. The exact ket and bra ground-state energy eigenvectors,
|Ψ〉 and 〈Ψ̃ |, of a general many-body system described by a Hamiltonian H,

H|Ψ〉 = Eg|Ψ〉 ; 〈Ψ̃ |H = Eg〈Ψ̃ | , (7.1)

are parametrised within the single-reference CCM as follows:

|Ψ〉 = eS |Φ〉 ; S =
∑

I �=0

SIC
+
I ,

〈Ψ̃ | = 〈Φ|S̃e−S ; S̃ = 1 +
∑

I �=0

S̃IC
−
I . (7.2)

The single model or reference state |Φ〉 is required to have the property of
being a cyclic vector with respect to two well-defined Abelian subalgebras
of multi-configurational creation operators {C+

I } and their Hermitian-adjoint
destruction counterparts {C−

I ≡ (C+
I )†}. Thus, |Φ〉 plays the role of a vacuum

state with respect to a suitable set of (mutually commuting) many-body crea-
tion operators {C+

I }. Note that C−
I |Φ〉 = 0, ∀ I �= 0, and that C−

0 ≡ 1, the
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identity operator. These operators are furthermore complete in the many-
body Hilbert (or Fock) space. Also, the correlation operator S is decomposed
entirely in terms of these creation operators {C+

I }, which, when acting on
the model state ({C+

I |Φ〉}), create excitations from it. We note that although
the manifest Hermiticity, (〈Ψ̃ |† = |Ψ〉/〈Ψ |Ψ〉), is lost, the normalisation con-
ditions 〈Ψ̃ |Ψ〉 = 〈Φ|Ψ〉 = 〈Φ|Φ〉 ≡ 1 are explicitly imposed. The correlation
coefficients {SI , S̃I} are regarded as being independent variables, and the full
set {SI , S̃I} thus provides a complete description of the ground state. For in-
stance, an arbitrary operator A will have a ground-state expectation value
given as,

Ā ≡ 〈Ψ̃ |A|Ψ〉 = 〈Φ|S̃e−SAeS |Φ〉 = Ā
(
{SI , S̃I}

)
. (7.3)

We note that the exponentiated form of the ground-state CCM parame-
trisation of (7.2) ensures the correct counting of the independent and excited
correlated many-body clusters with respect to |Φ〉 which are present in the
exact ground state |Ψ〉. It also ensures the exact incorporation of the Gold-
stone linked-cluster theorem, which itself guarantees the size-extensivity of
all relevant extensive physical quantities. We also note that any operator in
a similarity transform may be written as

Ã ≡ e−SAeS = A+ [A,S] +
1
2!

[[A,S], S] + · · · (7.4)

The determination of the correlation coefficients {SI , S̃I} is achieved by
taking appropriate projections onto the ground-state Schrödinger equations
of (7.1). Equivalently, they may be determined variationally by requiring
the ground-state energy expectation functional H̄({SI , S̃I}), defined as in
(7.3), to be stationary with respect to variations in each of the (independent)
variables of the full set. We thereby easily derive the following coupled set of
equations,

δH̄/δS̃I = 0 ⇒ 〈Φ|C−
I e−SHeS |Φ〉 = 0, ∀ I �= 0 ; (7.5)

δH̄/δSI = 0 ⇒ 〈Φ|S̃e−S [H,C+
I ]eS |Φ〉 = 0, ∀ I �= 0 . (7.6)

Equation (7.5) also shows that the ground-state energy at the stationary
point has the simple form

Eg = Eg({SI}) = 〈Φ|e−SHeS |Φ〉 . (7.7)

It is important to realize that this (bi-)variational formulation does not lead
to an upper bound for Eg when the summations for S and S̃ in (7.2) are
truncated, due to the lack of exact Hermiticity when such approximations
are made. However, one can prove that the important Hellmann-Feynman
theorem is preserved in all such approximations.
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We note that (7.5) represents a coupled set of non-linear multinomial
equations for the c-number correlation coefficients {SI}. The nested commu-
tator expansion of the similarity-transformed Hamiltonian

H̃ ≡ e−SHeS = H + [H,S] +
1
2!

[[H,S], S] + · · · (7.8)

and the fact that all of the individual components of S in the sum in (7.2)
commute with one another, together imply that each element of S in (7.2) is
linked directly to the Hamiltonian in each of the terms in (7.8). Thus, each
of the coupled equations (7.5) is of linked cluster type. Furthermore, each of
these equations is of finite length when expanded, since the otherwise infi-
nite series of (7.8) will always terminate at a finite order, provided only (as
is usually the case) that each term in the second-quantised form of the Ha-
miltonian, H, contains a finite number of single-body destruction operators,
defined with respect to the reference (vacuum) state |Φ〉. Hence, the CCM
parametrisation naturally leads to a workable scheme which can be efficiently
implemented computationally. It is important to note that at the heart of the
CCM lies a similarity transformation, in contrast with the unitary transfor-
mation in a standard variational formulation in which the bra state 〈Ψ̃ | is
simply taken as the explicit Hermitian conjugate of |Ψ〉.

In the case of spin-lattice problems of the type considered here, the ope-
rators C+

I become products of spin-raising operators s+k over a set of sites
{k}, with respect to a model state |Φ〉 in which all spins points “downward”
in some suitably chosen local spin axes. The CCM formalism is exact in the
limit of inclusion of all possible such multi-spin cluster correlations for S and
S̃, although in any real application this is usually impossible to achieve. It is
therefore necessary to utilise various approximation schemes within S and S̃.
The three most commonly employed schemes previously utilised have been:
(1) the SUBn scheme, in which all correlations involving only n or fewer spins
are retained, but no further restriction is made concerning their spatial sepa-
ration on the lattice; (2) the SUBn-m sub-approximation, in which all SUBn
correlations spanning a range of no more than m adjacent lattice sites are
retained; and (3) the localised LSUBm scheme, in which all multi-spin corre-
lations over all distinct locales on the lattice defined by m or fewer contiguous
sites are retained.

An excited-state wave function, |Ψe〉, is determined by linearly applying
an excitation operator Xe to the ket-state wave function of (7.2), such that

|Ψe〉 = Xe eS |Φ〉 . (7.9)

This equation may now be used to determine the low-lying excitation ener-
gies, such that the Schrödinger equation, H|Ψe〉 = Ee|Ψe〉, may be combined
with its ground-state counterpart of (7.1) to give the result,

εeX
e|Φ〉 = e−S [H,Xe]eS |Φ〉 , (7.10)
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where εe ≡ Ee−Eg is the excitation energy. By analogy with the ground-state
formalism, the excited-state correlation operator is written as,

Xe =
∑

I �=0

X e
I C

+
I , (7.11)

where the set {C+
I } of multi-spin creation operators may differ from those

used in the ground-state parametrisation in (7.2) if the excited state has
different quantum numbers than the ground state. We note that (7.11) implies
the overlap relation 〈Φ|Ψe〉 = 0. By applying 〈Φ|C−

I to (7.10) we find that,

εeX e
I = 〈Φ|C−

I e
−S [H,Xe]eS |Φ〉 ,∀ I �= 0 , (7.12)

which is a generalised set of eigenvalue equations with eigenvalues εe and
corresponding eigenvectors X e

I , for each of the excited states which satisfy
〈Φ|Ψe〉 = 0.

We note that lower orders of approximation may be determined analyti-
cally and an example of applying the LSUB2 and SUB2 approximations to the
spin-half linear chain XXZ model is given later in order to show clearly how
this is performed. However, it rapidly becomes clear that analytical determi-
nation of the CCM equations for higher orders of approximation is imprac-
tical. We therefore employ computer algebraic techniques in order efficiently
to determine and solve the CCM ket- and bra-state equations. A full exposi-
tion of this topic is beyond the scope of this chapter, although we note that
the problem essentially becomes one of pattern matching in order to deter-
mine the CCM ground-state ket equations. The bra-state equations may be
determined easily thereafter and the ket- and bra-state equations are rea-
dily solved using standard techniques for the solution of coupled polynomial
equations (e.g., the Newton-Raphson method). The excited-state eigenvalue
equations may be also determined in an analogous manner, and, although
this is not strictly necessary, we restrict the level of approximation to the
same for the excited state as for the ground state in calculations presented
here. A full exposition of the details in applying the CCM to high orders
of approximation is given for the ground state in [54, 59, 67] and for excited
states in [62].

Note that the results of SUBm-m and LSUBm approximation schemes
may be extrapolated to the exact limit, m → ∞, using various “heuristic’
approaches. How to do this is not discussed here, although the interested
reader is referred to [59,67] for more details.

7.3 The XXZ Model

We wish to apply the CCM to the spin-half XXZ model on the linear chain
and the square lattice in order to illustrate how one applies the CCM to a
practical problem and also to demonstrate the accuracy and power of the
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method. We note that these systems are unfrustrated and, in global spin
coordinates, the XXZ Hamiltonian is specified as follows,

H =
∑

〈i,j〉
[sx

i s
x
j + sy

i s
y
j +∆sz

i s
z
j ] , (7.13)

where the sum on 〈i, j〉 counts all nearest-neighbour pairs once. The Néel state
is the ground state in the trivial Ising limit ∆ → ∞, and a phase transition
occurs at (or near to) ∆ = 1. Indeed, the ground state demonstrates Néel-
like order in the z-direction for ∆ > 1 and a similar x-y planar phase for
−1 < ∆ < 1. The system is ferromagnetic for ∆ < −1.

7.3.1 The CCM Applied to the XXZ Model
Using a z-Aligned Néel Model State

We turn now to the choice of |Φ〉 and the operators {C+
I } for the case of

spin-half quantum antiferromagnets on bipartite lattices, in regimes where the
corresponding classical limit is described by a Néel-like order in which all spins
on each sublattice are separately aligned in some global spin axes. It is then
convenient to introduce a different local quantisation axis and different spin
coordinates on each sublattice, by a suitable rotation in spin space, so that the
corresponding reference state becomes a fully aligned (“ferromagnetic”) state,
with all spins pointing along, say, the negative z-axis in the corresponding
local axes. Such rotations are cannonical tranformations that leave the spin
commutation relations unchanged. In the same local axes, the configuration
indices I → {k1, k2, · · ·, kM}, a set of site indices, such that C+

I → s+k1
s+k2

·
· · s+kM

, where s±
k ≡ sx

k ± isy
k are the usual spin-raising and spin-lowering

operators at site k.
For the Hamiltonian of (7.13) we first choose the z-aligned Néel state

as our reference state (which is the exact ground state for ∆ → ∞, and is
expected to be a good starting point for all ∆ > 1, down to the expected
phase transition at ∆ = 1). We then perform a rotation of the up-pointing
spins by 180o about the y-axis, such that sx → −sx, sy → sy, sz → −sz on
this sublattice. The Hamiltonian of (7.13) may thus be written in these local
coordinates as,

H = −1
2

∑

<i,j>

[s+i s
+
j + s−

i s
−
j + 2∆sz

i s
z
j ] . (7.14)

The results presented below are based on the SUB2 approximation scheme
and the localised LSUBm scheme, in which we include all multispin corre-
lations over all possible distinct locales (or “lattice animals”) on the lattice
defined by m or fewer contiguous sites. We include all fundamental configu-
rations, I → {k1, k2, · · ·kn}, with n ≤ m, which are distinct under the point
and space group symmetries of both the lattice and the Hamiltonian. The
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numbers, NF and NFe
, of such fundamental configurations for the ground

and excited states, respectively, may be further restricted by the use of addi-
tional conservation laws. For example, the Hamiltonian of (7.13) commutes
with the total uniform magnetisation, sz

T =
∑

k s
z
k, where the sum on k runs

over all lattice sites. The ground state is known to lie in the sz
T = 0 subspace,

and hence we exclude configurations with an odd number of spins or with
unequal numbers of spins on the two equivalent sublattices. Similarly for the
excited states, since we are only interested in the lowest-lying excitation, we
restrict the choice of configurations to those with sz

T = ±1.

7.3.2 The LSUB2 Approximation
for the Spin-Half, Linear-Chain XXZ Model

We start the LSUB2 calculation by specifying the commutation relations
[s±

l , s
z
k] = ∓s±

k δl,k and [s+l , s
−
k ] = 2sz

kδl,k. We again note that the similarity
transform may be expanded as a series of nested commutators in (7.4). We
write the LSUB2 ket-state operator in the following simple form for the spin-
half linear chain model,

S = b1

N∑

i

s+i s
+
i+1 , (7.15)

where i runs over all sites on the linear chain and b1 is the sole ket-state
correlation coefficient. In this approximation we may therefore determine
similarity transformed versions of the spin operators, given by

s̃+l = s+l
s̃z

l = sz
l + b1(s+l s

+
l+1 + s+l−1s

+
l ) (7.16)

s̃−
l = s−

l − 2b1(sz
l s

+
l+1 + s+l−1s

z
l )− 2b21s

+
l−1s

+
l s

+
l+1

We note that the otherwise infinite-series of operators in the expansion of the
similarity transform terminates to finite order. We also note that (s+l )2|Φ〉 =
0 for any lattice site (which is true only for spin-half systems), and this
is implicitly assumed in the last of (7.16). Clearly we may also write the
similarity transformed version of the Hamiltonian as

H̃ = −1
2

∑

〈i,j〉
[s̃+i s̃

+
j + s̃−

i s̃
−
j + 2∆s̃z

i s̃
z
j ] . (7.17)

We may now substitute the expressions for the spin operators in (7.16) into
the above expression. The ground-state energy is given by

Eg

N
= −1

4
{∆+ 2b1} . (7.18)
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We note that our expression for the ground-state energy is size-extensive
(i.e., it scales linearly with N), as required by the Goldstone theorem which
is obeyed by the NCCM. Furthermore, this expression terminates to finite
order, as for the similarity transformed versions of spin operators. Finally, we
note that any other non-trivial choice for S will always yield this expression
for the ground-state energy. The task is now to find b1 and we note that if we
could include all possible spin correlations in S then we would obtain an exact
result for the ground-state energy. However, this is found to be impossible to
achieve for most cases in practice, and we make an approximation (such as
the LSUB2 approximation presented here). The LSUB2 ket-state equation is
given by

3b21 + 2∆b1 − 1 = 0 , (7.19)

which therefore implies that the LSUB2 ground-state energy may be written
explicitly in terms of ∆ as,

Eg

N
= −∆

12
− 1

6

√
∆2 + 3 . (7.20)

We note that this expression gives the correct result in the Ising limit ∆→∞.
We again note that the bra state does not manifestly have to be the Hermitian
conjugate of the ket state, and we note that the bra-state correlation operator
for the LSUB2 approximation is given by,

S̃ = 1 + b̃1

N∑

j

s−
j s

−
j+1 , (7.21)

where the index j runs over all sites on the linear chain and b̃1 is the sole
bra-state correlation coefficient in the LSUB2 approximation. In order to
determine the bra-state equation, we now explicitly determine H̄/({SI , S̃I}),

H̄ = −N
4

(∆+ 2b1) +Nb̃1

(
− 1

2
+∆b1 +

3
2
b21

)
, (7.22)

such that LSUB2 bra-state equation is given from ∂H̄∂b1 = 0 as

−1
2

+∆b̃1 + 3b1b̃1 = 0 , (7.23)

which gives b̃1 = 1
2 (∆2 +3)−1/2. Finally, we note that once the values for the

bra- and ket-state correlation coefficients have been determined (at a given
level of approximation) then we may also obtain the values for expectation
values, such as the sublattice magnetisation given by

M ≡ − 2
N
〈Ψ̃ |

N∑

i

sz
i |Ψ〉 = − 2

N
〈Φ|S̃e−S(

N∑

i

sz
i )e

S |Φ〉 . (7.24)
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The sublattice magnetisation is written here in terms of the “rotated” spin
coordinates. We note that this is given by

MLSUB2 = 1− 4b1b̃1 ,

=
1
3
[
1 +

2∆√
∆2 + 3

]
(7.25)

for the LSUB2 approximation.

7.3.3 The SUB2 Approximation
for the Spin-Half, Linear-Chain XXZ Model

The SUB2 approximation allows us to include all possible two-spin correlati-
ons in our wave function. We note that the SUB2 ket-state operator is given
by

S = 1/2
N∑

i

∑

r

brs
+
i s

+
i+r , (7.26)

and that the index i runs over all sites on the linear chain. Furthermore,
the index r runs over all lattice vectors which connect one sublattice to the
other and br is its corresponding SUB2 ket-state correlation coefficient for
this vector. We again determine a similarity transformed version of the spin
operators and we are able to determine the SUB2 equations, given by
∑

ρ

{
(1 + 2∆b1 + 2b21)δρ,r − 2(∆+ 2b1)br +

∑

s

br+s+ρbs

}
= 0 , (7.27)

where ρ runs over all (1D) nearest-neighbour lattice vectors. Equation (7.27)
may now be solved by employing a sublattice Fourier transform, given by

Γ (q) =
∑

r

eirqbr , (7.28)

where r again is a lattice vector (i.e., an odd integer number in 1D) which
connects the different sublattices. This expression has an inverse given by

br =
∫ π

0

dq

π
cos(rq)Γ (q) . (7.29)

The SUB2 equations (7.27) and (7.28) therefore lead to an expression for
Γ (q) given by

Γ (q) =
K

cos(q)
[1±

√
1− k2cos2(q)] , (7.30)

where K = ∆+2b1 and k2 = (1+2∆b1 +2b21)/K
2. (Note that we choose the

negative solution in (7.30) in order to reproduce results in the trivial limit
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∆ → ∞.) These equations now yield a self-consistency requirement on the
variable b1 and they may be solved iteratively at a given value of ∆. Indeed,
we know that all correlation coefficients must tend to zero (namely, for SUB2:
br → 0, ∀ r) as ∆ → ∞ and we track this solution for large ∆ by reducing
∆ in small successive steps. We find that the discriminant in (7.30) becomes
negative at a critical points, ∆c ≈ 0.3728. Furthermore, the behaviour of
br changes from exponential to algebraic decay with respect to r at ∆c.
These are strong indications that the CCM critical point is detecting the
known quantum phase transition in the system at ∆ = 1. Furthermore, the
SUB2 approximation for the ground state may be used in conjunction with
a SUB1 approximation for the excited state operator Xe in (7.11) in order
to determine the excitation spectrum. We note that the excitation spectrum
becomes soft at the critical point, ∆c. This is further evidence for a phase
transition and the interested reader is referred to [48] for more details.

We may also solve the SUB2-m equations directly using computational
techniques. Indeed, we study the limit points of these approximations by using
solution-tracking software (PITCON), which allows one to solve coupled non-
linear equations. We again track our solution from the limit ∆ → ∞ down
to and beyond the limit point and Fig. 7.1 shows our results. In particular,
we note that we have two distinct branches, although only the upper branch
is a “physical” solution. We again note that the CCM does not necessarily
always provide an upper bound on the ground-state energy – although this
is often the case for the physical solution! By tracking from a point at which
we are sure of, the solution we guarantee that our solution is valid, and this
approach is also used for LSUBm approximations.

We find that the two branches collapse onto the same line, namely, that
of the full SUB2 solution, as we increase the level of SUB2-m approximation
with respect to m. Indeed, we may plot the positions of the SUB2-m limit
points against 1/m2 and we note that these data points are found to be both
highly linear and they tend to the critical value, ∆c, for the full SUB2 equa-
tions in the limit m → ∞. Again, we note that the LSUBm and SUBm-m
approximations also show similar branches (namely, one “physical” and one
“unphysical” branch) which appear to converge as one increases the magni-
tude of the truncation index, m. This is a strong indication that our LSUBm
and SUBm-m critical points are also reflections of phase transitions in the
real system and that our extrapolated LSUBm and SUBm-m results should
tend to the exact solution.

7.3.4 CCM Results for the Spin-Half Square-Lattice XXZ Model
Using a z-Aligned Model State

We shall now illustrate the power and accuracy of the CCM by presenting
results in Figs. 7.2–7.4 respectively for the energy per spin (Eg/N) and the
sublattice magnetisation (M) for the ground state, and the energy gap (εe)
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Fig. 7.1. CCM SUB2-m and full SUB2 results for the ground-state energy of the
spin-half linear-chain XXZ model compared to exact results of the Bethe Ansatz
[34–37]. The CCM model state is the z-aligned Néel state. SUB2-m limit points
converge to the SUB2 limit at ∆c = 0.3728, at which point the solution to the
full SUB2 equations becomes complex, as m → ∞, and these are reflections of the
infinite-order phase transition at ∆ = 1 in the ‘true’ system. Note that the upper
branch of the SUB2-m results are physical and the lower branch is unphysical

of the lowest-lying excited state for the spin-half XXZ model on the square
lattice.

We find that for all LSUBm approximations with m > 2 the physical
branch of ground-state solutions (i.e., the one which becomes exact in the
∆→∞ limit) terminates at a critical value ∆c, such that for ∆ < ∆c no real
solution exists. These LSUBm “critical points” are analogous to the SUB2-m
limit points of the previous subsection, and they are again taken to be a signal
of the phase transition at (or near to) ∆ = 1. (Note that the “unphysical”
LSUBm branches, as seen for the SUB2-m approximations above, are not
plotted here in order to present a clear illustration of our results, although
they certainly exist.)

The SUB2 and LSUBm results using the z-aligned state as model state
are compared in Table 7.1 for the isotropic (∆ = 1) case with results from
linear spin-wave theory (LSWT) [74], series expansion techniques [75], and
quantum Monte Carlo (QMC) simulations [76]. Figures 7.2 and 7.4 show the
corresponding results for the ground-state energy and lowest-lying excitation
energy εe as functions of ∆. Our results for the ground- and excited-state
properties of the XXZ systems are seen to be in excellent agreement with
those results of the best of other approaches. We also note that values for the
spin stiffness of the Heisenberg model (see [77] and later on in this Chapter for
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further details) are also found to be very accurate. Furthermore, calculations
have been carried out for this model using an extended version of the CCM in
which the bra-state correlation operator S̃ is also written in an exponentiated
form, analogous to that of the ket-state operator. The interested reader is
referred to [61] for more details.

7.3.5 CCM Results for the Spin-Half Square-Lattice XXZ Model
Using a Planar Model State

There is never a unique choice of model state |Φ〉. Indeed, our choice should
be guided by any physical insight available to us concerning the system or,
more specifically, that particular phase of it which is under consideration. In
the absence of any other insight into the quantum many-body system, we may
sometimes be guided by the behaviour of the corresponding classical system.
The XXZ model under consideration provides just such an illustrative exam-
ple. Thus, for ∆ > 1 the classical Hamiltonian of (7.13) on the 2D square
lattice (and, indeed, on any bipartite lattice) is minimized by a perfectly anti-
ferromagnetically Néel-ordered state in the z-direction, and we have already
utilised this information in the preceding subsections. However, the classical
ground-state energy is minimized by a Néel-ordered state with spins pointing
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z-Aligned Model State LSUB4
z-Aligned Model State LSUB6
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Fig. 7.2. CCM LSUBm results using the z-aligned and planar Néel model states
for the ground-state energy of the spin-half square-lattice XXZ model compared to
quantum Monte Carlo results of [73]. Results for the LSUB6 approximation using
both model states end at their respective critical points
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Fig. 7.3. CCM LSUBm results using the z-aligned and planar Néel model states
for the sublattice magnetisation of the spin-half square-lattice XXZ model. Results
for the LSUB4 and LSUB6 approximation using both model states end at their
respective critical points
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Fig. 7.4. CCM LSUBm results using the z-aligned Néel state as model state for
the lowest-lying excitation energies of the spin-half square-lattice XXZ model
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Table 7.1. CCM results [59, 62] for the isotropic (∆ = 1) spin-half square-lattice
Heisenberg antiferromagnet compared to results of other methods. The numbers of
fundamental configurations in the ground-state and excited-state CCM wave fun-
ctions for the z-aligned Néel model state are given by Nz

f and Nz
fe

, respectively,
and the number of fundamental configurations in the ground-state CCM wave fun-
ction for the planar Néel model state is given by Np

f . Results for the critical points
of the z-aligned Néel model state are indicated by ∆z

c and results for the critical
points of the planar Néel model state are indicated by ∆p

c . (Note that results for the
ground-state expectation values for both model states are identical for the isotropic
Heisenberg model at ∆ = 1)

Method Eg/N M εe Nz
f Nz

fe
Np

f ∆z
c ∆p

c

LSUB2 −0.64833 0.841 1.407 1 1 1 – –
SUB2 −0.65083 0.827 1.178 – – – 0.799 1.204
LSUB4 −0.66366 0.765 0.852 7 6 10 0.577 1.648
LSUB6 −0.66700 0.727 0.610 75 91 131 0.763 1.286
LSUB8 −0.66817 0.705 0.473 1273 2011 2793 0.843 –
Extrapolated CCM −0.6697 0.62 0.00 – – – 1.03 –
LSWT [74] −0.658 0.606 0.0 – – – 1.0 –
Series Expansions [75] −0.6693(1) 0.614(2) – – – – – –
QMC [76] −0.669437(5) 0.6140(6) – – – – – –

along any direction in the xy plane, say along the x-axis for −1 < ∆ < 1.
Thus, in order to provide CCM results in the region −1 < ∆ < 1, we now
take this state to be our model state and we shall refer to it as the “planar”
model state.

In order to produce another “ferromagnetic” model state for the planar
model state in the local frames, we rotate the axes of the left-pointing spins
(i.e., those pointing in the negative x-direction) in the planar state by 90◦

about the y-axis, and the axes of the corresponding right-pointing spins by
−90◦ about the y-axis. (Note that the positive z-axis is defined here to point
upwards and the positive x-axis is defined to point rightwards.) Thus, the
transformations of the local axes are described by

sx → sz , sy → sy , sz → −sx (7.31)

for the left-pointing spins, and by

sx → −sz , sy → sy , sz → sx (7.32)

for the right-pointing spins. The transformed Hamiltonian of (7.13) may now
be written in these local axes as

H = −1
4

∑

〈i,j〉

[
(∆+ 1)(s+i s

+
j + s−

i s
−
j ) + (∆− 1)(s+i s

−
j + s−

i s
+
j ) + 4sz

i s
z
j

]
,

(7.33)
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In this case we track the CCM solution for the planar model state from the
point ∆ = −1. We note that all of the CCM correlation coefficients are zero
at ∆ = −1 because the model state is an exact ground eigenstate of the
Hamiltonian of (7.33) at this point. The results for the ground-state energy
using the planar model state are plotted in Fig. 7.2, and the corresponding
results for the sublattice magnetisation (M , again defined with respect to
the rotated local spin axes) are shown in Fig. 7.3. Furthermore, we note
that the Hamiltonian for the planar model state of (7.33) is identical to the
Hamiltonian for the z-aligned model state of (7.17) at ∆ = 1. Indeed, we
obtain identical results for the ground-state expectation values at ∆ = 1,
and this is an excellent test of the validity of our results.

7.3.6 Quantum Criticality of the Antiferromagnetic Phase
Transition for the Spin-Half Square-Lattice XXZ Model

We wish to investigate the quantum criticality of the phase at (or near to)
∆ = 1 for the case of the square lattice. The critical index for the singular
(non-analytic) term in Eg/N near an LSUBm critical point ∆c(m) can first be
obtained, for example, by direct examination of the anisotropy susceptibility,
χa ≡ −∂2(Eg/N)/∂∆2. For m > 2 we find,

χm
a (∆) −→ χ̄m

a |∆−∆c(m)|−α0 ; ∆→ ∆c(m) . (7.34)

Direct calculation for the LSUBm approximations using both the z-aligned
and planar Néel model states shows that for m > 2 we have α0 ≈ 1.500 ±
0.005. However, the prefactors χ̄m

a in (7.34) are themselves strongly dependent
on the truncation index m. We may now use a variant of the so-called coherent
anomaly method (CAM) of Suzuki [78] to extract further information. Thus,
we attempt to fit χ̄m

a with the coherent anomaly form,

χ̄m
a −→ K|∆c(∞)−∆c(m)|ν ; ∆→ ∆c(∞) , (7.35)

where K is a constant. Thus, as explained by Suzuki [78], one may intuit or
prove that the exact χa(∆) has the critical form,

χa(∆) −→ κ|∆−∆c(∞)|−α0+ν ; ∆→ ∆c(∞) ≡ ∆c , (7.36)

where κ is a constant.
A CAM analysis along these lines of the LSUBm results based on the

z-aligned Néel state gives ν ≈ 1.25 using the ∆z
A(4) and ∆z

A(6) data, and
ν ≈ 0.97 using the ∆z

A(6) and ∆z
A(8) data. We thus obtain a singular term

in Eg/N near ∆z
A with a critical exponent 2−α0 +ν ≈ 1.50−1.75. This may

be compared with the corresponding value of 3/2 for both the mean-field-
like CCM SUB2 approximation (in which all 2-spin-flip correlation terms
are retained, however far apart on the lattice) and linear spin-wave theory
(LSWT). A similar treatment for the planar model state yields a critical
exponent of 2 − α0 + ν ≈ 1.77, which is in good agreement with the result
for the z-aligned Néel model state.
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Fig. 7.5. Results for the Ising-expansion coefficients, plotted as a function of the
lattice distance R, corresponding to two-body excitations with respect to the model
state for the spin-half, square lattice Heisenberg model at ∆ = 1 obtained via the
LSUBm approximation scheme (with m = {4, 6, 8}) and the SUB2 approximation.
(Figure taken from [32])

7.3.7 CCM Prediction of the Nodal Surface of the Spin-Half
Square-Lattice Heisenberg Model

We consider an expansion of the ground-state wave function in a complete
Ising basis {|I〉} (in terms of the local coordinates after rotation). This may
be again written as, |Ψ〉 =

∑
I ΨI |I〉, where the sums over I goes over all 2N

Ising states, and we find that this expression naturally leads from (7.2) (also
see [32,60]) to an exact mapping of the CCM correlation coefficients {SI} to
the Ising-expansion coefficients {ΨI}, which is given by

ΨI = 〈Φ|C−
I e

S |Φ〉 ≡ 〈Φ|s−
i1
s−

i2
· · · s−

il
eS |Φ〉 . (7.37)

It is possible to match the terms in the exponential to the ‘target’ con-
figuration of C−

I in (7.37), and so obtain a numerical value for the {ΨI}
coefficients once the CCM ket-state equations have been derived and solved
for a given value of the anisotropy. Note that we may plot the Ising-expansion
coefficients as a function of the lattice distance R, corresponding to two-body
excitations with respect to the model state, and results are shown in Fig. 7.5.

We observe that all of the coefficients are found to be positive, and this
shows that the exact Marshall-Peierls sign rule is being obeyed for our ab
initio calculation. We note that no such condition is imposed in our CCM
treatment of this model. Indeed, it is also the case that all other four- or
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higher-body terms have corresponding Ising expansion terms which are po-
sitive. We also note that the Ising expansion coefficients appear to converge
rapidly with increasing levels of approximation, and that a strength of the
CCM is that it may be applied to even very strongly frustrated systems where
no analogues of the Marshall-Peierls sign rule are usually known.

We note that it might be possible to use the CCM in order to simulate
accurately the nodal surface of quantum problem and this information might
be fed into a fixed-node QMC calculation in order to simulate very accurately
the properties of this system. Indeed, general rules might be inferred from
the CCM data and, if so, an exact solution, to within QMC statistical limits,
might be determined. The interested reader is referred to [31,32,60] for more
information.

7.4 The J–J ′ Model: A Square-Lattice Model
with Competing Nearest-Neighbour Bonds

We now wish to show that the CCM can treat frustrated systems as easily as
unfrustrated systems, and we begin by noting that the J–J ′ model is a spin-
half Heisenberg model on a square lattice with two kinds of nearest-neighbour
bonds J and J ′, as shown in Fig. 7.6,

H = J
∑

〈ij〉1

si · sj + J ′
∑

〈ij〉2

si · sj . (7.38)

The sums over 〈ij〉1, and 〈ij〉2 represent sums over the nearest-neighbour
bonds shown in Fig. 7.6 by dashed and solid lines respectively. Each square-
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Fig. 7.6. Illustration of the J–J ′ model of (7.38), with two kinds of regularly
distributed nearest-neighbour exchange bonds, J (dashed lines) and J ′ (solid lines)
and its classical spiral state (Φ > 0) shown for the ferromagnetic case (J < 0,
J ′ > |J |/3). (Figure taken from [77])
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lattice plaquette consists of three J bonds and one J ′ bond. A model with
such a zigzag pattern has been treated by various methods [64,77,79–82]. For
the cases in which J and J ′ have different signs (i.e., one bond is ferromagnetic
while the other is antiferromagnetic) the plaquettes are frustrated, whereas
competition without frustration is realized for antiferromagnetic bonds (J ′ >
0 and J > 0).

Using this model we discuss the influence of quantum fluctuations on
the ground-state phase diagram and in particular on the nature of the zero-
temperature phase transitions from phases with collinear magnetic order at
small frustration to phases with noncollinear spiral order at large frustration.
The role of quantum fluctuations is examined by comparing ferromagnetic-
spiral and antiferromagnetic-spiral transitions within the same model. Whe-
reas for the classical version of the J–J ′ model both situations can be mapped
onto each other, the quantum model behaves differently in the two cases and
this is because of the different nature of the collinear state. The quantum
Néel state on two-dimensional lattices exhibits strong quantum fluctuations.
For example, as we saw in the previous section, the sublattice magnetisation
of the Heisenberg antiferromagnet (HAF) on the square lattice is only about
60% of its classical value. By contrast, the ferromagnetic state is the same for
the quantum and the classical model and there are no quantum fluctuations
in this state.

The classical ground state of this J–J ′ model is collinear (i.e., ferroma-
gnetic or antiferromagnetic depending on the sign of J) for the unfrustrated
cases. For |J ′| > |J |/3 (and J and J ′ having different signs) the frustration
is large enough in order to force the ground state to be a noncollinear state
of spiral nature with a characteristic pitch angle Φ = ±|Φcl| given by

|Φcl| =
{

0 |J ′| < |J|
3

arccos
(

1
2

√
1 + 1

|J′|

)
|J ′| ≥ |J|

3
. (7.39)

Figure 7.6 shows the classical spiral state for the ferromagnetic case (J <
0, J ′ > |J |/3) where the spin orientations at A and B lattice sites as numbered
on the figure are defined the angle θn = nΦcl. For the antiferromagnetic case
(J > 0, J ′ < −J/3) all of the spins on one sublattice are reversed. We note
that Φ = 0 corresponds to the collinear state. The classical transition between
the collinear and the noncollinear state is of second order and takes place at
the critical point J ′

c = −J/3. Figure 7.7 gives an illustration of the complete
classical ground-state phase diagram.

We choose the spiral state with the characteristic angle Φ (illustrated in
Fig. 7.6) as our CCM model state. Further details concerning the treatment
of the J–J ′ model via the CCM are given in [64, 77, 81]. We calculate the
ground state and the low-lying excitations of the Hamiltonian of (7.38). We
use the CCM for high orders of approximation up to LSUB8 which contains
4986 fundamental configurations for the Néel model state with Φ = 0 and
42160 fundamental configurations for a helical model state with Φ �= 0. (We
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Fig. 7.7. Classical ground-state phase diagram for the J–J ′ model on the square
lattice with competing nearest-neighbour bonds, indicating the collinear Néel and
ferromagnetic phases and the noncollinear spiral phases for various values of J and
J ′. (Figure taken from [77])

note that such a large number of configurations as the latter case may be
considered only by using parallel processing techniques, although this is not
performed here. The interested reader is referred to [83] for more details of
a parallelised implementation of the CCM.) By way of comparison we also
exactly diagonalise finite sized lattices of up to N = 32 spins with periodic
boundary conditions. We extrapolate to the infinite-lattice limit using stan-
dard finite-size scaling laws.

For sufficiently strong antiferromagnetic J ′ bonds the J–J ′ model is cha-
racterised by a tendency to singlet pairing of the two spins coupled by a J ′

bond, and hence the long-range magnetic (collinear or noncollinear) order is
destroyed. We observe clear indications of a second-order phase transition to a
quantum paramagnetic dimerised phase at a certain critical value of J ′ = J ′

s.
However the only case examined in detail here is the antiferromagnetic case
(J = +1). Evidence of a phase transition to a dimerised phase is indicated
by the sublattice magnetisation (see Fig. 7.8). The results of the CCM and
exact diagonalisations (ED) agree well with each other and with the result
J ′

s ≈ 2.56 from cumulant series expansions [79], whereas by contrast renor-
malised spin wave theories (RSWT) clearly overestimate the order. We also
note that another indication of a dimerised phase is the appearance of a gap
∆ between the singlet ground state and the first triplet excitation. The gap
appears to open in the range 2.5<∼J ′

s
<∼3.0 for both the ED and CCM calcula-

tions (see Fig. 7.8). This result is in good agreement with the corresponding
estimates for the critical point using the magnetisation.

The phase transition to the dimerised phase is also indicated by the spin
stiffness ρs. The ground-state stiffness is a variable which indicates the di-
stance of the ground state from criticality, and the breakdown of the Néel
long-range order is thus accompanied by ρs going to zero. The spin stiffness
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Fig. 7.8. Indications of a phase transition to the dimerised phase for the J–J ′ model
on the square lattice with competing nearest-neighbour bonds, with J = +1. Left
graph: sublattice magnetisation versus J ′ using the CCM, exact diagonalisation,
and spin wave theories. Right graph: spin gap versus J ′ using the CCM compared
to results of exact diagonalisation. (Figure taken from [77])

measures the amount of energy used in introducing a twist θ to the direction
of spin between every pair of neighbouring rows, such that

ρs =
d2

dθ2

E0(θ)
N

∣∣∣∣
θ=0

, (7.40)

and this quantity may be calculated directly using the CCM.
We note that the magnetic order parameters may only tell us whether

certain types of long-range order are present, whereas the spin stiffness has
the advantage of being unbiased with respect to the nature of the ordering.
The spin stiffness constitutes, together with the spin wave velocity, the fun-
damental parameter that determines the low-energy dynamics of magnetic
systems [84]. The CCM LSUBn results are given in Fig. 7.9. We calculate the
stiffness using two different directions of in-plane rows, i.e., rows parallel to
the J ′ bonds and rows perpendicular to the J ′ bonds. We note that, although
the results of the stiffness for the two directions are different in general (see
Fig. 7.9), the phase transition points (i.e., the values of J ′ where ρs becomes
zero) agree well with each other for the various LSUBn approximations alt-
hough the extrapolated CCM results are expected to be even more accurate.
Our calculations predict that J ′

s ≈ 2.8 which is again in good agreement
with the results of the other methods. We note that this phase transition
to the dimerised phase is expected to belong to the three-dimensional O(3)
universality class as indicated by the value of the correlation length critical
exponent [82].

We now consider the frustrated region of the J–J ′ model for J and J ′

with different signs. We note that classically there is a second-order phase
transition from collinear order to noncollinear order at J ′ = −J/3 for both
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Fig. 7.9. The spin stiffness versus J ′ for two different rows within the plane of the
lattice are good indicators of a phase transition to the dimerised phase for the J–J ′

model on the square lattice with competing nearest-neighbour bonds, with J = +1.
Left graph: rows along the x direction (parallel to the J ′ bonds). Right graph: rows
along the y direction (perpendicular to the J ′ bonds). (Figure taken from [77])

Fig. 7.10. Pitch angle Φ versus |J ′| for the quantum and the classical case of the J–
J ′ model on the square lattice with competing nearest-neighbour bonds. Although
Φ is classically the same for the ferromagnetic case (J = −1, J ′ > 0) and for the
antiferromagnetic case (J = +1, J ′ < 0) we note that the quantum pitch angle is
different for both cases. The curves to the left of the classical (dashed) curve belong
to J = −1 and those to the right of it belong to J = +1. (Figure taken from [77])

antiferromagnetic and ferromagnetic nearest-neighbour J-bonds. By contrast,
the behaviour of the quantum model for the two cases is different concerning
the phase transition. In particular, we find that the critical point is shifted to
J ′ ≈ −1.35 (see Fig. 7.10) for the antiferromagnetic case (J = +1), although
no such shift is observed for the ferromagnetic case (J = −1).

The exact diagonalisation (ED) data of the structure factor S(k) (see
Fig. 7.11) also agree with these findings. For J = +1 the collinear Néel order
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Fig. 7.11. Ground-state structure factor S(k) ∝ ∑

i,j∈A e
i(Rj−Ri)·k〈si · sj〉 (note

that the indices i and j run over one sublattice) for a 8×4 lattice of the J–J ′ model
on the square lattice with competing nearest-neighbour bonds for the quantum and
the classical case for various spiral vectors k for antiferromagnetic J = +1 (left
graph) and ferromagnetic J = −1 (right graph). (Figure taken from [77])

[k = (0, 0)] becomes unstable in comparison to the noncollinear spiral order
[k = (π/4, 0)] in the classical model for J ′ <∼ − 0.36. We note that this occurs
only for J ′ <∼ − 0.95 in the quantum case. The situation for the ferromagne-
tic case (J = −1) is again different, and the results of the structure factor
show that the transition from k = (0, 0) (collinear ferromagnetic order) to
k = (π/4, 0) (spiral order) takes place at nearly the same value of J ′ ≈ 0.36 for
both the classical and the quantum cases. We may also use the difference bet-
ween the amount of the on-site magnetic moment 〈si〉 and its classical value
〈si〉cl = 1/2 as a measure of quantum fluctuations. We compare the strength
of quantum fluctuations near the collinear-noncollinear transitions for both
the antiferromagnetic and the ferromagnetic cases. Although the quantum
fluctuations are particularly strong for J = +1 near the antiferromagnetic-
spiral transition (leading to an on-site magnetic moment less then 20% of
its classical value [64]), there are virtually no quantum fluctuations at the
ferromagnetic-spiral transition for J = −1 because the on-site magnetic mo-
ment takes its classical value 1/2 up to J ′ ≈ 0.36 (cf. [81]). Hence the shift of
the critical J ′

c in the antiferromagnetic case can clearly be attributed to the
strong quantum fluctuations.

We may summarise by saying that our findings are generally consistent
with the statement that quantum fluctuations (which we have in the antifer-
romagnetic case only) prefer a collinear ordering. We note that the quantum
collinear state can survive for the quantum model studied here into a classi-
cally frustrated region in which classical theory indicates that the collinear
state is already unstable. In addition, our results indicate that there is a
second-order phase transition for the ferromagnetic case (J = −1) which is
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Fig. 7.12. Phase diagrams of the J–J ′ model on the square lattice with competing
nearest-neighbour bonds for the classical case (left graph) and for the quantum
case (right graph). The dashed line indicates a first-order phase transition, while
the other transitions are of second order. (Figure taken from [77])

in agreement with classical theory. The collinear-noncollinear transition in the
antiferromagnetic case (J = +1) is probably of first order for the quantum
model (cf. Fig. 7.10 and discussion in [64]) which compares to a second-order
transition for the classical case. Figure 7.12 compares the phase diagrams of
this J–J ′ model for the classical and the quantum cases.

7.5 An Interpolating Kagomé/Triangle Model

We also wish to study another strongly frustrated spin-half Heisenberg mo-
del, namely one which interpolates smoothly between the triangular-lattice
antiferromagnet (TAF) [59,85–87] and the Kagomé-lattice [65,88,89] antifer-
romagnet (KAF). We shall refer to this as the interpolating Kagomé/triangle
model (illustrated in Fig. 7.13), and the Hamiltonian is given by

H = J
∑

〈i,j〉
si · sj + J ′

∑

{i,k}
si · sk , (7.41)

where 〈i, j〉 runs over all nearest-neighbour (n.n.) bonds on the Kagomé lat-
tice, and {i, k} runs over all n.n. bonds which connect the Kagomé lattice
sites to those other sites on an underlying triangular lattice. Note that each
bond is counted once and once only. We explicitly set J = 1 throughout this
paper, and we note that at J ′ = 1 we thus have the TAF and at J ′ = 0 we
have the KAF.

7.5.1 CCM Treatment of the Interpolating Kagomé/Triangle
Model

For the interpolating Kagomé/triangle model described by (7.41), we choose
a model state |Φ〉 in which the lattice is divided into three sublattices, de-
noted {A,B,C}. The spins on sublattice A are oriented along the negative
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Fig. 7.13. The interpolating Kagomé/triangle model is illustrated in diagram (a),
where the bonds of strength J between Kagomé lattice sites are indicated by the
thick solid lines and the non-Kagomé bonds of strength J ′ on the underlying tri-
angular lattice sites are indicated by the “broken” lines. The triangular lattice
Heisenberg antiferromagnet (TAF) is illustrated in diagram (b), and we note that
the two models are equivalent when J = J ′. The quadrilateral unit cells for both
cases are also illustrated. The interpolating Kagomé/triangle model contains four
sites per unit cell, whereas the TAF has only one site per unit cell. (Figure taken
from [65])

z-axis, and spins on sublattices B and C are oriented at +120◦ and −120◦,
respectively, with respect to the spins on sublattice A. Our local axes are
chosen by rotating about the y-axis the spin axes on sublattices B and C by
−120◦ and +120◦ respectively, and by leaving the spin axes on sublattice A
unchanged. Under these canonical transformations,

sx
B → −1

2
sx

B −
√

3
2
sz

B ; sx
C → −1

2
sx

C +
√

3
2
sz

C ,

sy
B → sy

B ; sy
C → sy

C ,

sz
B →

√
3

2
sx

B −
1
2
sz

B ; sz
C → −

√
3

2
sx

C −
1
2
sz

C . (7.42)

The model state |Φ〉 now appears mathematically to consist purely of
spins pointing downwards along the z-axis, and the Hamiltonian (for J = 1)
is given in terms of these rotated local spin axes as,

H =
∑

〈i→j〉

{
−1

2
sz

i s
z
j +

√
3λ
4

(sz
i s

+
j + sz

i s
−
j − s+i s

z
j − s−

i s
z
j )

+
λ

8
(s+i s

−
j + s−

i s
+
j )− 3λ

8
(s+i s

+
j + s−

i s
−
j )
}

+ J ′
∑
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. (7.43)
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Note that i and j run only over the NK sites on the Kagomé lattice,
whereas k runs over those non-Kagomé sites on the (underlying) triangular
lattice. N indicates the total number of triangular-lattice sites, and each
bond is counted once and once only. We also note that we have multiplied
all of the off-diagonal terms in the new Hamiltonian by a factor of λ. We
shall use this factor in order to determine the perturbation series around the
Ising limit (λ = 0) for the ground-state energy and sublattice magnetisation.
The case λ = 1 corresponds to our isotropic Heisenberg case of (7.41). The
symbol → indicates an explicit bond directionality in the Hamiltonian given
by (7.43), namely, the three directed nearest-neighbour bonds included in
(7.43) point from sublattice sites A to B, B to C, and C to A for both types
of bond. We now perform high-order LSUBm calculations for this model via
a computational procedure for the Hamiltonian of (7.43).

7.5.2 CCM Results for the Ground-State Properties

We note that for the CCM treatment of the interpolating Kagomé/triangle
model presented here (and see [65] for further details) the unit cell contains
four lattice sites (see Fig. 7.13). By contrast, previous calculations [59] for
the TAF used a unit cell containing only a single site per unit cell. Hence, the
interpolating Kagomé/triangle model has many more “fundamental” configu-
rations than the TAF model at equivalent levels of approximation. However,
we find that those configurations which are not equivalent for the interpola-
ting Kagomé/triangle model but are equivalent for the TAF have CCM cor-
relation coefficients {SI , S̃I} which become equal at the TAF point, J ′ = 1.
Hence, the CCM naturally and without bias reflects the extra amount of
symmetry of the interpolating Kagomé/triangle model at this one particular
point. This is an excellent indicator of the validity of the CCM treatment
of this model. The results for the interpolating Kagomé/triangle model at
J ′ = 1 thus also exactly agree with those of a previous CCM treatment of
the TAF [59].

We now set λ = 1 for the remainder of this subsection and again we
“track” the “trivial” solution for large J ′ for decreasing values of J ′ until
we reach a critical value of J ′

c at which the solution to the CCM equations
breaks down. Results for J ′

c for this model are presented in Table 7.2. A simple
“heuristic” extrapolation of these results gives a value of J ′

c = 0.0±0.1 for the
position of this phase transition point. This result indicates that the classical
three-sublattice Néel-like order, of which about 50% remains for the TAF,
completely disappears at a point very near to the KAF point (J ′ = 0).

The results for the ground-state energy are shown in Fig. 7.14 and in
Table 7.2. These results are seen to be highly converged with respect to each
other over the whole of the region 0 ≤ J ′ ≤ 1. The results for the ground-
state energies of the KAF and TAF model in Table 7.2 agree well with results
of other techniques. Indeed, we believe that the extrapolated CCM results
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Fig. 7.14. CCM results for the ground-state energy per spin of the interpola-
ting Kagomé/triangle model (with J = 1) using the LSUBm approximation with
m = {2, 3, 4, 5, 6}. The boxes indicate the CCM critical points, J ′

c, and a simple
extrapolation in the limit m → ∞ implies that J ′

c = 0.0 ± 0.1. (Figure taken
from [65])

Table 7.2. CCM results [65] for the ground-state energy per spin and sublattice
magnetisation of the TAF and KAF models using the LSUBm approximation with
m = {2, 3, 4, 5, 6}. CCM critical values, J ′

c, of the interpolating Kagomé/triangle
model (with J = 1), which are themselves indicators of a phase transition point in
the true system, are also given. Comparison is made in the last row with the results
of other calculations

KAF TAF J–J ′

m Eg/NK MK Eg/N MK J ′
c

2 −0.37796 0.8065 −0.50290 0.8578 –
3 −0.39470 0.7338 −0.51911 0.8045 −0.683
4 −0.40871 0.6415 −0.53427 0.7273 −0.217
5 −0.41392 0.5860 −0.53869 0.6958 −0.244
6 −0.41767 0.5504 −0.54290 0.6561 −0.088
∞ −0.4252 0.366 −0.5505 0.516 0.0±0.1
c.f. −0.43 ( [89]) 0.0 −0.551 ( [85]) 0.5 ( [86,87]) –

are unquestionably among the most accurate results available for the ground-
state energies of the TAF and KAF.

We now wish to describe how much of the original classical ordering of the
model state remains for the quantum system. If one considers non-Kagomé
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Fig. 7.15. CCM results for the sublattice magnetisation of the interpolating
Kagomé/triangle model (with J = 1) using the LSUBm approximation with
m = {2, 3, 4, 5, 6}. (Figure taken from [65])

lattice sites then the spins on these sites are effectively “frozen” into their
original directions (of the model state) at J ′ = 0. Hence, we believe that the
relevant quantity to be considered for this model is the average value of sz

k

(again after rotation of the local spin axes) where k runs only over the NK

Kagomé lattice sites, given by

MK = − 2
NK

NK∑

k=1

sz
k . (7.44)

The results for MK are presented in Fig. 7.15 and in Table 7.2. The puzzling
“upturn” of MK for the LSUB5 data is an artifact, and typically such be-
haviour only ever occurs when one enters a phase in which the model state
becomes an increasingly bad starting point. Although the extrapolated value
for MK specifically at the KAF point remains non-zero, the LSUB6 result
goes to zero very close to the KAF point. CCM results are thus fully consi-
stent with the hypothesis that, unlike the TAF, the ground state of the KAF
does not contain any Néel ordering.

7.5.3 Evaluation of the Perturbation Series Using CCM

Finally, it is instructive to make contact with the cumulant series expansions
for the anisotropic TAF (i.e., J ′ = J = 1) with respect to the parameter λ.
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Table 7.3. Expansion coefficients in powers of λ up to the 15th order for the
ground-state energy per spin, Eg/N , and the sublattice magnetisation, M , for the
anisotropic spin- 1

2 triangular-lattice Heisenberg antiferromagnet obtained from the
CCM equations in the LSUB6 approximation. The exact series expansions up to
the 11th order obtained by Singh and Huse [85] are also included for comparison.
(Table taken from [59])

Order LSUB6: Eg/N Exact: Eg/N LSUB6: M Exact: M
0 −0.3750000 −0.3750000 1 1
1 0.0000000 0.0000000 0 0
2 −0.1687500 −0.1687500 -0.27 −0.27
3 0.0337500 0.0337500 0.108 0.108
4 −0.0443371 −0.0443371 −0.2726916 −0.2726916
5 0.0204259 0.0204259 0.1717951 0.1717951
6 −0.0283291 −0.0283291 −0.3315263 −0.3315263
7 0.0311703 0.0315349 0.4060277 0.4110737
8 −0.0357291 −0.0476598 −0.5331858 −0.7382203
9 0.0541263 0.0685087 0.8894023 1.1781303
10 −0.0771681 −0.1025446 −1.3927395 −2.0109889
11 0.1294578 0.1565522 2.4179612 3.4012839
12 −0.1848858 ? −4.0426184 ?
13 0.2857225 ? 6.8086538 ?
14 −0.4463496 ? −11.488761 ?
15 0.7021061 ? 19.388053 ?

We have computed the perturbative CCM solutions of Eg/N and the sub-
lattice magnetisation M , as defined in (7.24) with respect to the local spin
axes, in terms of the anisotropy parameter λ. In Table 7.3 we tabulate the
expansion coefficients from the LSUB6 approximation, together with the cor-
responding results from exact series expansions [85]. We note that the LSUB6
approximation reproduces the exact series expansion up to the sixth order.
We conjecture that the LSUBm approximation reproduces the exact series
expansion to the same mth order. Moreover, the fact that the correspon-
ding values of several of the higher-order expansion coefficients from both
the CCM LSUB6 perturbative solution and the exact series expansion re-
main close to each other shows that the exponential parametrisation of the
CCM with the inclusion of multi-spin correlations up to a certain order also
captures the dominant contributions to correlations of a few higher orders in
the series expansions.

7.6 The J1–J2 Ferrimagnet

We now briefly present results for another frustrated model in which we have
both nearest- and next-nearest-neighbour antiferromagnetic bonds. (The in-
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terested reader is referred to [68, 77] for more details.) The Hamiltonian for
the square-lattice spin-half/spin-one J1–J2 ferrimagnet is given by

H = J1

∑

〈i,j〉
si · sj + J2

∑

{i,k}
si · sk , (7.45)

where 〈i, j〉 runs over all nearest-neighbour bonds on the square lattice, {i, k}
runs over all next-nearest-neighbour bonds. We assume that J1 = 1 and
J2 > 0 throughout this article and so this model is frustrated. Note that
one sublattice (A) of the square lattice is populated entirely by spin-one
spins (sA = 1) and the other sublattice (B) is populated entirely by spin-half
spins (sB = 1/2). This model is an extension of the well-known spin-half
J1–J2 model on the square lattice (see e.g. [90–96] and references therein)
which serves as a canonical model for the discussion of an order-disorder
quantum phase transition driven by the interplay of quantum fluctuations
and frustration.

A feature of such ferrimagnetic spin systems is that the Lieb-Mattis theo-
rem may be obeyed (if frustration is excluded) such that the ground state has
a magnetic moment per spin of strength (sA − sB) = 1/2. Note in particular
that this property is obeyed for the ferrimagnet of (7.45) at J2 = 0, and thus
a macroscopic lattice magnetisation exists for this case.

We note that many ferrimagnetic materials have recently been fabrica-
ted and various examples are the “ladder” systems: MnCu(pba OH) (H2O)3
(where pba OH=2-hydroxy-1, 3-propylenebisoxamato) and MnCu(pba) (H2O)3
· H2O (where pba = 1,3-propylenebisoxamato) [97–99]. These materials con-
tain magnetic atoms Mn (sA = 5/2) and Cu (sB = 1/2).

The classical behaviour of the square-lattice spin-half/spin-one ferrima-
gnet of (7.45) is also interesting and three distinct phases are predicted. The
first such phase for J2 ≤ 0.25 is one in which the ground-state is the collinear
ferrimagnetic Néel state (shown in Fig. 7.16). A second-order phase transi-
tion then occurs within this classical picture to a phase in which the spin-one
spins may cant at an angle θ, although the spin-half spins do not change
their direction (also shown in Fig. 7.16). This state is henceforth referred to
as the “spin-flop” state. A first-order phase transition to a collinear state
in which next-nearest-neighbour spins are antiparallel (again, see Fig. 7.16)
then occurs classically, and this state is referred to here as the “collinear
striped” state. Note that this state in the classical model is degenerate with
states canting at an arbitrary angle between spins on sublattice A and spins
on sublattice B. However, this degeneracy is lifted by quantum fluctuations
which select the collinear state [92, 100,101]. We note that the spin-flop and
collinear striped states are “incommensurate” in the sense that no value of
the angle θ may be chosen such that the two states are equivalent. We note
however that the Néel and spin-flop states are equivalent when θ = π.

A further motivation for studying this model is that exact calculations of
finite-sized lattices indicate that the behaviour of the quantum ferrimagnet of
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a b c
Fig. 7.16. The classical ground states used to treat the square-lattice spin-
half/spin-one J1–J2 ferrimagnet via the CCM. These states are namely: a) the
collinear ferrimagnetic Néel state; b) the collinear “striped” state; and c) the “spin-
flop” state. Note that long arrows indicate spin-one spins (and their orientation)
and short arrows indicate the spin-half spins. The primitive unit cells are shown
by the ovals for the Néel and striped states and by the rectangles for the spin-flop
state. Full lines indicate the nearest-neighbour bonds and dashed lines indicate the
next-nearest-neighbour bonds. (Figure taken from [77])

(7.45) may be much different from the behaviour of its linear chain counter-
part and from the square-lattice spin-half J1–J2 antiferromagnet. These exact
calculations of finite-sized lattices suggest that the behaviour of the square-
lattice ferrimagnet is analogous to that of the classical behaviour outlined
above.

Three model states are used to treat the square-lattice spin-half/spin-
one J1–J2 ferrimagnet in order to provide results across various regimes of
differing quantum order. The first such model state is the collinear Néel state,
and the primitive unit cell in this case contains a spin-half site and a spin-one
site (shown in Fig. 7.16). The underlying Bravais lattice is formed from two
vectors (

√
2,
√

2) and (
√

2,−
√

2). There is also an 8-point symmetry group,
namely: rotations of 0◦, 90◦, 180◦, and 270◦; and reflections about the lines
x = 0, y = 0, y = x, and y = −x. The collinear striped state (also shown
in Fig. 7.16) is also used as a model state, in which spins for even values of
x along the x-axis point “downwards” and spins for odd values of x point
“upwards.” The primitive unit cell again contains only two spins, although
this time only four of the eight point group symmetry operations are allowed,
namely: rotations of 0◦ and 180◦; and reflections about the lines x = 0 and
y = 0. We note that rotations of the local axes of 180◦ about the y-axis of
every spin is carried out such that each spin now appears (mathematically)
to point “downwards”. Each spin may now be treated equivalently.

It is noted that (in the original unrotated spin coordinates) sz
T ≡

∑
i s

z
i =

0 is preserved for all CCM approximations for these two models states in order
to reduce the number of fundamental configurations at a given LSUBm or
SUBm-m approximation level.
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Fig. 7.17. Ground-state energy per spin of the square-lattice spin-half/spin-one J1–
J2 ferrimagnet versus J2 for the CCM method using three model states compared
to results of exact diagonalisations of finite-sized lattices. (Note that we have set
J1 = 1)

The third model state is the spin-flop state. We note that there is no
equivalent conserved quantity to sz

T for the spin-flop model state, although
single-body correlations are explicitly excluded from this calculation as they
are (in some sense) already included by the rotation of the local axes of
spins. It should however be noted that this is an explicit assumption of the
calculation for the spin-flop model state.

The amount of ordering on each sublattice is represented by,

m1 =
1
NA

∣∣∣∣
NA∑

iA

〈Ψ̃ |sz
iA
|Ψ〉
∣∣∣∣ ; m2 =

1
NB

∣∣∣∣
NB∑

iB

〈Ψ̃ |sz
iB
|Ψ〉
∣∣∣∣ (7.46)

where iA runs over all spin-one lattice sites and iB runs over all spin-half lat-
tice sites. Note that, as usual, all of the spins for all of the models states have
been rotated such that all spins appear mathematically to point downwards.
The quantities m1 and m2 are the expectation values of the magnetic mo-
ment in the z-direction on the A and B sublattice, respectively, with respect
to a given model state and represent order parameters for this model.

The ground-state energies predicted by the CCM using the three model
states are shown in Fig. 7.17 and once again CCM results are in good agre-
ement with results of exact diagonalisations (ED) of finite-sized lattices and
spin-wave theory. Results for the sublattice magnetisations shown in Fig. 7.18
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Fig. 7.18. Sublattice magnetisations, m1 and m2 of (7.46), of the square-lattice
spin-half/spin-one J1–J2 ferrimagnet versus J2 for the CCM method using three
model states compared to results of exact diagonalisations (ED) of finite-sized lat-
tices. Note that full lines are those results for the sublattice magnetisation using
linear spin-wave theory, open circles are those results of exact diagonalisations, and
CCM results are indicated by the filled circles. (Figure taken from [68])

also show good correspondence with results of exact diagonalisations (ED)
of finite-sized lattices and spin-wave theory. Hence, the CCM yields excellent
quantitative accuracy for the ground-state properties of the spin-half/spin-
one J1–J2 ferrimagnet across a wide range of the next-nearest-neighbour bond
strength J2 by the use of three different model states. The CCM thus provi-
des a comprehensive picture of the ordering in the ground state, an accurate
prediction of the phase diagram, and even evidence regarding the order of
the phase transitions.

The results for the ground-state properties of the spin-half/spin-one J1–
J2 ferrimagnet at J1 = 1 and J2 = 0 based on the Néel model state are
presented in Table 7.4 and we see that our raw SUBm-m results appear to
converge rapidly. An extrapolation in the limit m→∞ is also performed for
the J1–J2 ferrimagnet at J1 = 1 and J2 = 0 in order to provide even better
accuracy.

The positions of quantum phase transition points as a function of α =
J2/J1 are also shown in Fig. 7.18. A second-order phase transition is obser-
ved at αc1 and CCM results place this at αc1 = 0.27, which is slightly above
the classical value. By contrast, CCM results predict a first-order phase tran-
sition at αc2 ≈ 0.5 and this result is in good agreement with those results
of both spin-wave theory and exact diagonalisations. Another possible phase
is also indicated in Fig. 7.18, namely, one is which we have finite and non-
zero sublattice magnetisation on the spin-one lattice sites and zero sublattice
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Table 7.4. Results for the ground-state energy and amounts of sublattice ma-
gnetisations m1 and m2, on the spin-one and spin-half sites respectively, of the
square-lattice spin-half/spin-one J1–J2 ferrimagnet at J1 = 1 and J2 = 0 based
on the Néel model state [77]. Note that NF indicates the number of fundamental
configurations at a given level of LSUBm or SUBm-m approximation. CCM re-
sults are compared to exact diagonalisations (ED) of finite-sized lattices. Heuristic
extrapolations in the limit m → ∞ are performed

NF Eg/N m1 m2

SUB2-2 1 −1.192582 0.92848 0.42848
SUB4-4 13 −1.204922 0.90781 0.40781
SUB6-6 268 −1.206271 0.90333 0.40334
LSUB6 279 −1.206281 0.90329 0.40330

Extrapolated CCM – −1.2069 0.898 0.398
ED (N = 16) – −1.218134 0.87515 0.37515
ED (N = 20) – −1.212050 0.88482 0.38483

magnetisation on the spin-half lattice sites. The onset of this phase with
increasing J2 is indicated by the symbol, α∗.

7.7 Conclusion

We have seen in this chapter that the CCM may be applied to various quan-
tum spin systems at zero temperature. In particular, suggestive results for the
positions of CCM critical points were observed, and these points were seen
to correspond closely to the occurrence of quantum phase transitions in the
“real” system. Furthermore, quantitatively accurate results for expectation
values with respect to the ground and excited states were determined. These
results were seen to be competitive with the best results of other approximate
methods.

A possible use of high-order CCM techniques might be to predict excita-
tion spectra of quantum magnets to great accuracy. Furthermore, this would
mean that a direct connection might be made to results of neutron scatte-
ring experiments. Also, the application of the CCM to quantum spin systems
which exhibit novel ordering, such as those with ground states which de-
monstrate dimer- or plaquette-solid ordering, is another possible future goal.
Furthermore, the extension of high-order techniques to bosonic and fermionic
systems is possible in future.

High-order CCM techniques might also be applied at even greater levels of
approximation with the aid of parallel processing techniques [83]. Indeed, the
CCM is well-suited to such an implementation and recent CCM calculations
using parallel processing techniques have been carried out for approximately
104 fundamental configurations. We believe that an increase of at least ano-
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ther order of magnitude in the number of fundamental configurations should
easily be possible in the near future by using such techniques.

The extension of the CCM to quantum spin systems at non-zero tempera-
tures might also be accomplished by using thermo-field theory. The applica-
tion of the CCM at both zero and non-zero temperatures might then help to
explain the subtle interplay of quantum and thermal fluctuations in driving
phase transitions over a wide range of physical parameters.
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62. R.F. Bishop, D.J.J. Farnell, S.E. Krüger, J.B. Parkinson, J. Richter, and C.

Zeng: J. Phys.: Condens. Matter 12, 7601 (2000).
63. R.F. Bishop, D.J.J. Farnell, and M.L. Ristig: Int. J. Mod. Phys. B 14, 1517

(2000).
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81. S.E. Krüger and J. Richter: Phys. Rev. B 64 024433, (2001).
82. P. Tomczak and J. Richter: J. Phys. A: Math. Gen. 34 L461, (2001).
83. D.J.J. Farnell and R.F. Bishop: arXiv:cond-mat/0311126.
84. S. Chakravarty, B.I. Halperin and D.R.Nelson: Phys. Rev. B 39 2344, (1989).
85. R.R.P. Singh and D.A. Huse: Phys. Rev. Lett. 68, 1766 (1992).
86. B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre: Phys. Scripta T49, 192

(1993); Phys. Rev. B 50, 10048 (1994).
87. T. Jolicoeur and J.C. LeGuillou: Phys. Rev. B 40, 2727 (1989).
88. P. Lecheminant, B. Bernu, C. Lhuillier, L. Pierre, and P. Sindzingre: Phys.

Rev. B 56, 2521 (1997).
89. C. Waldtmann, H.U. Everts, B. Bernu, C. Lhuillier, P. Sindzingre, P. Leche-

minant, and L. Pierre: Eur. Phys. J. B 2, 501 (1998).
90. P. Chandra and B. Docout: Phys. Rev. B 38, 9335 (1988).
91. H.J. Schulz and T.A.L. Ziman: Europhys. Lett. 18, 355 (1992); H.J. Schulz,

T.A.L. Ziman, and D. Poilblanc: J. Phys. I 6, 675 (1996).
92. J. Richter: Phys. Rev. B 47, 5794 (1993).
93. J. Oitmaa and Zheng Weihong: Phys. Rev. B 54, 3022 (1996).
94. R.R.P. Singh, Zheng Weihong, C.J. Hamer, and J. Oitmaa: Phys. Rev. B 60,

7278 (1999).
95. V.N. Kotov and O.P. Sushkov: Phys. Rev. B 61, 11820 (2000).
96. L. Capriotti and S. Sorella: Phys. Rev. Lett. 84, 3173 (2000).
97. O. Kahn, Y. Pei, and Y. Jornauz. In: Inorganic Materials, edited by D.W.

Bruce and D.O. O’Hare (John Wiley & Sons Ltd., New York, 1992).
98. N.B. Ivanov, J. Richter, and U. Schollwöck: Phys. Rev. B 58, 14456 (1998).
99. J. Richter, U. Schollwöck, and N.B. Ivanov: Physica B 281 & 282 845 (2000).

100. A. Moreo, E. Dagotto, T. Jolicoeur and J. Riera: Phys. Rev. B 42, 6283 (1990).
101. K. Kubo and T. Kishi: J. Phys. Soc. Jpn. 60, 567 (1991).



8 Integrability of Quantum Chains: Theory
and Applications to the Spin-1/2 XXZ Chain

Andreas Klümper

Theoretische Physik, Universität Wuppertal, Gauß-Str. 20, 42097 Wuppertal,
Germany, kluemper@physik.uni-wuppertal.de

Abstract. In this contribution we review the theory of integrability of quantum
systems in one spatial dimension. We introduce the basic concepts such as the
Yang-Baxter equation, commuting currents, and the algebraic Bethe ansatz. Quite
extensively we present the treatment of integrable quantum systems at finite tem-
perature on the basis of a lattice path integral formulation and a suitable transfer
matrix approach (quantum transfer matrix). The general method is carried out for
the seminal model of the spin-1/2 XXZ chain for which thermodynamic properties
like specific heat, magnetic susceptibility and the finite temperature Drude weight
of the thermal conductivity are derived.

8.1 Introduction

Integrable quantum chains have continuously attracted attention, because of
the possibility of obtaining exact data for the spectrum and other physical
properties despite the truely interacting nature of the spins resp. particles.
Important examples of these systems are the Heisenberg model [1,2], tJ- [3–5]
and Hubbard models [6,7] The computational basis for the work on integra-
ble quantum chains is the Bethe ansatz yielding a set of coupled non-linear
equations for 1-particle wave-numbers (Bethe ansatz roots). Many studies of
the Bethe ansatz equations were directed at the ground-states of the conside-
red systems and have revealed interesting non-Fermi liquid properties such as
algebraically decaying correlation functions with non-integer exponents and
low-lying excitations of different types, i.e. spin and charge with different
velocities constituting so-called spin and charge separation, see [8–10].

A very curious situation arises in the context of the calculation of the par-
tition function from the spectrum of the Hamiltonian. Despite the validity of
the Bethe ansatz equations for all energy eigenvalues of the above mentioned
models the direct evaluation of the partition function is rather difficult. In
contrast to ideal quantum gases the eigenstates are not explicitly known, the
Bethe ansatz equations provide just implicit descriptions that pose problems
of their own kind. Yet, knowing the behaviour of quantum chains at finite
temperature is important for many reasons. As a matter of fact, the strict
ground-state is inaccessible due to the very fundamentals of thermodynamics.

A. Klümper, Integrability of Quantum Chains: Theory and Applications to the Spin-1/2 XXZ
Chain, Lect. Notes Phys. 645, 349–379 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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Therefore the study of finite temperatures is relevant for theoretical as well
as experimental reasons.

The purpose of this review is to introduce to a unified treatment of the
ground-state and the finite temperature properties of integrable quantum
chains. First, in Sect. 8.2 we introduce the essential concepts of quantum
integrability. We show how to construct an infinite set of conserved currents,
i.e. local operators commuting with the Hamiltonian. At the heart of these
constructions is the embedding of the Hamiltonian into a family of commu-
ting row-to-row transfer matrices of a certain classical model. In Sect. 8.3 we
derive a lattice path integral representation for the partition function of a
rather large class of integrable Hamiltonians at finite temperature. Here we
also introduce a very efficient transfer matrix method based on the quantum
transfer matrix. In Sect. 8.4 we review the algebraic Bethe ansatz for the
seminal model of the partially anisotropic spin-1/2 Heisenberg chain (XXZ
chain) related to the classical six-vertex model on a square lattice. The results
of this section are the construction of eigenstates and eigenvalues of the Ha-
miltonian as well as the quantum transfer matrix of the system. In Sect. 8.5
we demonstrate how to transform the large number of coupled Bethe an-
satz equations into a simple finite set of non-linear integral equations. These
equations are studied numerically in Sect. 8.6 where explicit results for the
temperature dependence of specific heat and susceptibility of the spin-1/2
XXZ chain are given. Finally, in Sect. 8.7 we resume the line of reasoning
developed for the proof of integrability and study the thermal conductivity
of the XXZ chain a topic that is of considerable current interest.

8.2 Integrable Exchange Hamiltonians

We begin with the definition and discussion of a general class of quantum
chains with nearest-neighbour interactions based on (graded) permutations.
Consider a one-dimensional lattice with L sites and periodic boundary con-
ditions imposed. A q-state spin variable αi is assigned to each site i. We
generally consider the situation where each spin α has its own grading, i.e. sta-
tistics number εα = (−1)ξα = ±1. A spin α with εα = +1 (εα = −1) is called
bosonic (fermionic). The Hamiltonian of the “permutation model” can be
introduced as

H =
L∑

i=1

Pi,i+1 (8.1)

with the (graded) permutation operator Pi,i+1

Pi.i+1 |α1 · · ·αiαi+1 · · ·αL〉 = (−1)ξαiαi+1 |α1 · · ·αi+1αi · · ·αL〉 , (8.2)

where ξαiαi+1 is 1 if both αi and αi+1 are fermionic, and 0 otherwise.
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Model (8.1) is shown to be exactly solvable on the basis of the Yang-
Baxter equation. Many well-known exactly solvable models are of type (8.1),
e.g. the spin-1/2 Heisenberg chain with q = 2 and ε1 = ε2 = +1, the free
fermion model with q = 2 and ε1 = −ε2 = +1, and the supersymmetric
t-Jmodel with q = 3 and ε1 = −ε2 = ε3 = +1. If m of the ε’s are +1 and
n(= q−m) are −1, for example ε1 = · · · = εm = +1, εm+1 = · · · εq = −1, we
call the model (m,n)-permutation model or just (m,n)-model.

Before sketching the proof of integrability of the general permutation
model we look closer at two important special cases. The (2, 0)-model (q =
2, ε1 = ε2 = +1) is the spin-1/2 Heisenberg chain with Hamiltonian

H = 2
L∑

i=1

Si · Si+1 + L/2, (8.3)

in terms of SU(2) spin-1/2 operators S.
The (2, 1)-model (q = 3, ε1 = ε2 = +1 and ε3 = −1) is the supersymme-

tric t − J model with Hamiltonian (ignoring a trivial shift)

H = −t
∑

j,σ

P(c†j,σcj+1,σ + c†j+1,σcj,σ)P + J
∑

j

(SjSj+1 − njnj+1/4), (8.4)

with standard fermionic creation and annihilation operators c† and c, pro-
jector P =

∏
j(1 − nj↑nj↓) ensuring that double occupancies of sites are

forbidden, and 2t = J (with normalization t = 1). The supersymmetric
t − J model was shown to be integrable [11, 12] by the well-known Bethe
ansatz [13, 14]. The ground-state and excitation spectrum were investiga-
ted [15] and critical exponents calculated by finite-size scaling and conformal
field theory studies [16, 17]. The thermodynamical properties were studied
in [5] by use of the thermodynamical Bethe ansatz (TBA) and in [18, 19] by
use of the quantum transfer matrix (QTM).

For proving the integrability of the quantum system, a classical counter-
part is defined on a two-dimensional square lattice of L×N sites, where we
impose periodic boundary conditions throughout this paper. We assume that
variables taking values 1, 2, · · · , q are assigned to the bonds of the lattice.
Boltzmann weights are associated with local vertex configurations α, β, µ
and ν and are denoted by Rαµ

βν , see Fig. 8.1. The classical counterpart to
(8.1) is the Perk-Schultz model [20] with the following Boltzmann weights

Rαµ
βν (u, v) = δανδβµ + (u− v) · (−1)ξαξµ · δαβδµν , (8.5)

where u and v are freely adjustable “interaction” parameters assigned to
the entire horizontal and vertical lines intersecting in the particular vertex
under consideration. These weights satisfy the Yang-Baxter equation which
we depict graphically in Fig. 8.2.

In the remainder of this section we want to indicate: (i) how the classical
model is related to the quantum chain, and (ii) why the models are integra-
ble. These issues are best discussed in terms of the transfer matrices of the
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= αR β(u,v) u

v

µ

ν

αµ
βν

Fig. 8.1. Graphical depiction of the fundamental R-matrix (8.5). The Boltzmann
weight assigned to each vertex configuration (configuration of spin variables around
a vertex) corresponds to a matrix element of the matrix R
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Fig. 8.2. Depiction of the fundamental Yang-Baxter equation (YBE) for the R-
matrix with the following graphical rules: Each bond carries a spin variable (ranging
from 1 to q), each vertex (via Fig. 8.1) corresponds to a local Boltzmann weight
R depending on the local spin configuration. The algebraic term corresponding
to each graph of the equation is obtained by multiplying the Boltzmann weights
corresponding to the (three) vertices and summing over spin variables on closed
(inner) bonds. The values of the spin variables on open (outer) bonds are fixed
and the assignment of these values is identical for both sides. The statement of the
graphical equation is that both sides of the equation evaluate to the same expression
for arbitrary, however identical assignment of spins to the open bonds on either side.
A consequence of the YBE is the commutativity of the transfer matrix with respect
to the spectral parameter, see Sect. 8.3 and Fig. 8.6

classical model

Tµ
ν (u) =

∑

{α}

L∏

i=1

Rαiµi
αi+1νi

(u, vi), (8.6)

where we consider the spectral parameters vi on the vertical bonds as fixed,
i.e. independent of u. In dependence on the spectral parameter u the object
T (u) represents a family of commuting matrices (the proof will be given in a
slightly more general setting in the subsequent section)

T (v)T (w) = T (w)T (v), for arbitrary v, w. (8.7)

Commutativity holds especially in the case of vanishing spectral parameters
vi = 0 on the vertical bonds, which case we refer to as the row-to-row transfer
matrix. For this we have the additional simple limiting behaviour



8 Integrability of Quantum Chains, the Spin-1/2 XXZ Chain 353

T (0) = translation (shift) operator = eiP , (8.8)
d

du
lnT (u)

∣∣∣∣
u=0

= Hamiltonian = H, (8.9)

also known as the Hamiltonian limit (P : momentum operator) [21,22].
Apparently, Hamiltonians obtained as members of commuting families

of operators possess (infinitely) many conserved quantities. Any element of
the family (or higher order derivative) commutes with H. For the case of
isotropic SU(m,n)-symmetric systems we have presented the typical proof
of integrability based on classical models satisfying the YBE. There are many
more models satisfying the YBE with different or reduced symmetries. A fa-
mous example of a system with reduced symmetry is the partially anisotropic
spin-1/2 Heisenberg chain (also known as XXZ chain). The Hamiltonian and
R-matrix corresponding to this will be given in the next section.

Above, we have only shown how to incorporate the momentum opera-
tor and the Hamiltonian into the family of commuting operators T (u). As
indicated, lnT (u) is a generating function for conserved quantities

J (n) =
(
∂

∂u

)n

lnT (u)
∣∣∣
u=0

, (8.10)

that appear to be sums of local operators (with or without physical relevance).
Quite generally, the current J (2) is related to the thermal current, whose
conservation implies non-ballistic thermal transport, see Sect. 8.7.

Logically, the presentation of diagonalization of the Hamiltonian or, more
generally, of the row-to-row transfer matrix should follow directly after the
above discussion of integrability. We will see, however, that another class
of transfer matrices is worthwhile to be studied. This is a class of commu-
ting staggered transfer matrices (quantum transfer matrices) occurring in the
study of the thermodynamics of the quantum system at finite temperature
(next section). We therefore postpone the discussion of the algebraic Bethe
ansatz for both classes of transfer matrices to Sect. 8.4.

8.3 Lattice Path Integral and Quantum Transfer Matrix

At the beginning of this section we want to comment on the various techni-
ques developed for the study of thermodynamics of integrable systems at the
example of the simplest one, namely the spin-1/2 Heisenberg chain.

The thermodynamics of the Heisenberg chain was studied in [1, 2, 23]
by an elaborate version of the method used in [24]. The macro-state for a
given temperature T is described by a set of density functions formulated
for the Bethe ansatz roots satisfying integral equations obtained from the
Bethe ansatz equations (8.40). In terms of the density functions expressions
for the energy and the entropy are derived. The minimization of the free
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energy functional yields what is nowadays known as the Thermodynamical
Bethe Ansatz (TBA).

There are two “loose ends” in the sketched procedure. First, the descrip-
tion of the spectrum of the Heisenberg model is built on the so-called “string
hypothesis” according to which admissible Bethe ansatz patterns of roots are
built from regular building blocks. This hypothesis was criticized a number
of times and led to activities providing alternative approaches to the finite
temperature properties.

The second “loose end” within TBA concerns the definition of the entropy
functional. In [1, 2, 23, 24] the entropy is obtained from a combinatorial eva-
luation of the number of micro-states compatible with a given set of density
functions of roots. As such it is a lower bound to the total number of micro-
states falling into a certain energy interval. However, this procedure may be
viewed as a kind of saddle point evaluation in the highly dimensional subspace
of all configurations falling into the given energy interval. Hence, the result is
correct in the thermodynamic limit and the “second loose end” can actually
be tied up. Interestingly, the “second loose end” of the TBA approach was
motivation for a “direct” evaluation [25] of the partition function of integra-
ble quantum chains. A straightforward (though involved) calculation leads to
the single non-linear integral equation of [26].

In this section we want to introduce the approach to thermodynamics of
integrable quantum chains that we believe is the most efficient one, namely
the “quantum transfer matrix” (QTM) approach. The central idea of this
technique is a lattice path-integral formulation of the partition function of
the Hamiltonian and the definition of a suitable transfer matrix [27–35].

In order to deal with the thermodynamics in the canonical ensemble we
have to deal with exponentials of the Hamiltonian H. These operators are
obtained from the row-to-row transfer matrix T (u) of the classical model in
the Hamiltonian limit (small spectral parameter u) (8.9)

T (u) = eiP+uH+O(u2), (8.11)

with P denoting the momentum operator.
The main idea of the quantum transfer matrix (QTM) method at finite

temperature is as simple as follows (for details the reader is referred to the
papers [34,35]). First, let us define a new set of vertex weights R by rotating
R by 90 degrees as

R
αµ

βν (u, v) = Rµβ
να(v, u), (8.12)

see Fig. 8.3. We further introduce an “adjoint” transfer matrix T (u) as a
product of R(−u, 0) [7, 34] with Hamiltonian limit

T (u) = e−iP+uH+O(u2). (8.13)

With these settings the partition function ZL of the quantum chain of length
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v

αµ
βν

µ

ν

~
= αR β(u,v) u
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αµ
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ν

Fig. 8.3. Graphical depiction of the R and R̃matrices ((8.12) and (8.19)) associated
with R. The Boltzmann weights assigned to the vertex configurations R and R̃
correspond to the Boltzmann weights of the rotated fundamental vertices R

L at finite temperature T reads

ZL = Tr e−βH = lim
N→∞

ZL,N (8.14)

where β = 1/T and ZL,N is defined by

ZL,N := Tr
[
T (−τ)T (−τ)

]N/2
, τ :=

β

N
. (8.15)

The r.h.s. of this equation can be interpreted as the partition function of a
staggered vertex model with alternating rows corresponding to the transfer
matrices T (−τ) and T (−τ), see Fig. 8.4. We are free to evaluate the partition
function of this classical model by adopting a different choice of transfer
direction. A particularly useful choice is based on the transfer direction along
the chain and on the corresponding transfer matrix TQTM which is defined
for the columns of the lattice. The partition function of the quantum chain
at temperature 1/β is given by

ZL,N = Tr
(
TQTM)L . (8.16)

In the remainder of this paper we will refer to TQTM as the “quantum transfer
matrix” of the quantum spin chain, because TQTM is the closest analogue to
the transfer matrix of a classical spin chain. Due to this analogy the free
energy f per lattice site is given just by the largest eigenvalue Λmax of the
QTM

f = −kBT lim
N→∞

logΛmax. (8.17)

Note that the eigenvalue depends on the argument τ = β/N which vanishes
in the limit N →∞ requiring a sophisticated treatment.

The QTM as defined above is actually a member of a commuting family
of matrices T QTM defined by

[
TQTM]µ

ν
(v) =

∑

α

N/2∏

j=1

Rα2j−1µ2j−1
α2jν2j−1

(v, τ)R̃α2jµ2j
α2j+1ν2j

(v,−τ), (8.18)
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N

L

−τ

τ

τ

−τ

Fig. 8.4. Illustration of the two-dimensional classical model onto which the quan-
tum chain at finite temperature is mapped. The square lattice has width L identical
to the chain length, and height identical to the Trotter number N . The alternating
rows of the lattice correspond to the transfer matrices T (−τ) and T (−τ), τ = β/N .
The column-to-column transfer matrix TQTM (quantum transfer matrix) is of par-
ticular importance to the treatment of the thermodynamic limit. The arrows placed
on the bonds indicate the type of local Boltzmann weights, i.e. R and R-matrices
alternating from row to row. (The arrows indicate the type of Boltzmann weight,
they do not denote local dynamical degrees of freedom)

where we introduced yet another vertex weight R̃ as a rotation of R by -90
degrees

R̃αµ
βν (u, v) = Rνα

µβ(v, u). (8.19)

Here we have introduced a spectral parameter v such that TQTM(v) is a com-
muting family of matrices generated by v. A proof of this consists of two
steps. First, we observe that R̃ matrices and R matrices share the same in-
tertwiner, i.e. the order of multiplication of two R̃ matrices is interchanged
by the same R matrix as in the case of the fundamental YBE, see Fig. 8.5. As
R and R̃ matrices share the same intertwiner, the transfer matrix obtained
from products of arbitrary sequences of R and R̃ with same spectral parame-
ter (say v) on the continuous line constitutes a family of commuting matrices
(spanned by v). The proof of this statement is graphically depicted in Fig. 8.6
for the case of the matrix TQTM(v) (8.18). In other words, TQTM(v) is inte-
grable which allows us to diagonalize TQTM(v). The final results, of course,
are physically interesting just for v = 0 as the physically meaningful QTM is
identical to TQTM(0).

The main difference to the transfer matrix treatment of classical spin
chains is the infinite dimensionality of the space in which TQTM is living
(for N →∞). In formulating (8.17) we have implicitly employed the in-
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Fig. 8.5. Graphical derivation of the Yang-Baxter equation for R̃ matrices. In the
upper row, the fundamental YBE for R matrices is shown. The YBE for R̃ matrices
is obtained through rotation. Note that the intertwiner for R vertices is identical
to the intertwiner for R̃ vertices

−τ τ−ττ

−τ τ−ττ

−τ τ−ττ

−τ τ−ττ

v

v

v

v

=

Fig. 8.6. Railroad proof for the commutativity of transfer matrices: The intertwiner
is pulled through from right to left by a successive application of the YBE
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terchangeability of the two limits (L,N → ∞) and the existence of a gap
between the largest and the next-largest eigenvalues of TQTM for finite tem-
perature [36,37].

The next-leading eigenvalues give the exponential correlation lengths ξ of
the equal time correlators at finite temperature

1
ξ

= lim
N→∞

ln
∣∣∣∣
Λmax

Λ

∣∣∣∣ . (8.20)

Lastly we want to comment on the study of thermodynamics of the quan-
tum chain in the presence of an external magnetic field h coupling to the
spin S =

∑L
j=1 Sj , where Sj denotes a certain component of the jth spin, for

instance Sz
j . This, of course, changes (8.15) only trivially

ZL,N := Tr
{[
T (−τ)T (−τ)

]N/2 · eβhS
}
. (8.21)

On the lattice, the equivalent two-dimensional model is modified in a simple
way by a horizontal seam. Each vertical bond of this seam carries an indi-
vidual Boltzmann weight e±βh/2 if Sj = ±1/2 which indeed describes the
action of the operator

eβhS =
L∏

j=1

eβhSj . (8.22)

Consequently, the QTM is modified by an h dependent boundary condition.
It is essential that these modifications can still be treated exactly as the
additional operators acting on the bonds belong to the group symmetries of
the model.

We like to close this section with some notes on the relation of the two
apparently different approaches, the combinatorial TBA and the operator-
based QTM. In fact, these methods are not at all independent! In the latter
approach there are several quite different ways of analysis of the eigenvalues
of the QTM. In the standard (and most economical) way, see below, a set
of just two coupled non-linear integral equations (NLIE) is derived [34, 35].
Alternatively, an approach based on the “fusion hierarchy” leads to a set of
(generically) infinitely many NLIEs [34, 38] that are identical to the TBA
equations though completely different reasoning has been applied!

Very recently [26], yet another formulation of the thermodynamics of the
Heisenberg chain has been developed. At the heart of this formulation is just
one NLIE with a structure very different from that of the two sets of NLIEs
discussed so far. Nevertheless, this new equation has been derived from the
“old” NLIEs [26, 39] and is certainly an equivalent formulation. In the first
applications of the new NLIE, numerical calculations of the free energy have
been performed with excellent agreement with the older TBA and QTM
results. Also, analytical high temperature expansions up to order 100 have
been carried out on this basis.
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8.4 Bethe Ansatz Equations for the Spin-1/2 XXZ
Chain

In the following we consider the anisotropic Heisenberg chain (slightly gene-
ralizing (8.3)) with Hamiltonian HL

H = 2
L∑

j=1

[Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

j S
z
j+1] (8.23)

with periodic boundary conditions on a chain of length L. Apparently, for
∆ = +1 the system specializes to the isotropic antiferromagnetic Heisenberg
chain, for ∆ = −1 (and applying a simple unitary transformation) the system
reduces to the isotropic ferromagnetic case.

The classical counterpart of the XXZ chain is the six-vertex model
(Fig. 7). For our purposes the following parameterization of the Boltzmann
weights is useful

a(w) = 1, b(w) =
sin(γw/2)

sin(γw/2 + γ)
, c(w) =

sin γ
sin(γw/2 + γ)

. (8.24)

All relations between Hamiltonian of the quantum system, row-to-row trans-

u

v

u

v

u

v
1

1

1

1 1 1

2

2

1 2

a(u−v) b(u−v) c(u−v)

2

1

Fig. 8.7. Allowed vertices of the six-vertex models with corresponding Boltzmann
weights a, b, c. The remaining vertices are obtained by an exchange of bond-states
1 ↔ 2

fer matrix of the classical model and the QTM as introduced in the previous
section are also valid in the present case if ∆ and γ are related by ∆ = cos γ.
The only modification concerns (8.9) as here the relation of Hamiltonian
(8.23) and the logarithmic derivative of the row-to-row transfer matrix for
the weights (8.24) aquires a normalization factor

H = 2
sin γ
γ

d

du
lnT (u)

∣∣
u=0. (8.25)

Monodromy Matrix
Our aim is to diagonalize the row-to-row transfer matrix and the QTM by
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means of the algebraic Bethe ansatz. We first review some notation and basic
properties of R-matrices (as collections of local Boltzmann weights) and the
so-called L-matrix. The elements of the L-matrix at site j are operators acting
in the local Hilbert space hj (for the six-vertex model isomorphic to � C

2).
The L-matrix’ element in row α and column β is given in terms of the R
matrix

Lj
α
β(w) = Rαµ

βν (w)ej
µ
ν , (8.26)

where eµ
ν is a matrix with only non-vanishing entry 1 in row µ and column

ν. This reads explicitly for the six-vertex model

Li =
(

a+b
2 + a−b

2 σz
i cσ+

i

cσ−
i

a+b
2 − a−b

2 σz
i

)
(8.27)

with a, b, c given in (8.24).1 The so-called monodromy-matrix is defined as a
product of all L-matrices on consecutive sites

T = L1 · · ·LN =
(
A B
C D

)
. (8.28)

In essence, the (α, β)-element of the monodromy matrix is the transfer ma-
trix of a system with fixed boundary spins α on the left end and β on the
right end of a row.

Algebraic Bethe Ansatz
The procedure of diagonalization can be decribed as follows:

• First we search for a pseudo-vacuum state (reference state) |Ω〉 that is
a simple eigenstate of the operator-valued diagonal entries A and D of
the monodromy matrix T (and hence an eigenstate of the transfer matrix
T = A+D). The lower-left entry C of the monodromy matrix applied to
|Ω〉 yields zero, the upper-right entry B yields new non-vanishing states.
Hence C and B play the role of annihilation and creation operators.

• From the Yang-Baxter equations a quadratic algebra of commutation re-
lations for the entries of the monodromy matrix (notably for A, D, and
B) is derived. By use of these relations algebraic expressions of the eigen-
states and rather explicit expressions for the eigenvalues are derived.

It turns out that the row-to-row transfer matrix and the QTM can be
treated in parallel as the quadratic algebra of the entries of the monodromy
matrix is identical for both cases. The only difference lies in the different
reference states and the different “vacuum expectation values”. We therefore
1 As a reminder: σ+ = σx + iσy and σ− = σx − iσy, and states |+〉, |−〉 correspond

to |1〉, |2〉.
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focus our presentation on the slightly simpler case of the row-to-row transfer
matrix and describe the necessary modifications for the QTM in (8.42,8.43).

Reference State
Provided we find local states |ωi〉 that are eigenstates of the diagonal entries
of Li and are annihilated by the left-lower entry, then |Ω〉 may be taken as
the product of these local states. A glance to (8.27) shows that this is possible
just with |ωi〉 = |2〉i

|Ω〉 =
N⊗

i

|2〉i . (8.29)

The monodromy matrix T applied to |Ω〉 yields an upper triangular 2×2
matrix of states

T |Ω〉 =
(
aN |Ω〉 B |Ω〉

0 bN |Ω〉

)
(8.30)

or explicitly

A |Ω〉 = aN |Ω〉 , D |Ω〉 = bN |Ω〉 , T |Ω〉 = (aN + bN ) |Ω〉 . (8.31)

Therefore, |Ω〉 is an eigenstate of T .

Quadratic Algebra of Operators A, B, and D
We intend to use the operator B as creation operator for excitations, i.e. we
demand that the new state |Ω1(v)〉 := B(v) |Ω〉 (“one-particle state”) be an
eigenstate of T (u) = A(u) + D(u). What we need to know is the operator
algebra for interchanging B(v) with A(u) and D(u). This algebra can be
obtained from the YBE, for a graphical representation see Fig. 8.8. By fixing
the exterior spins on the horizontal bonds we obtain all the commutators we
need for interchanging the operators. We begin with the relation of any two
B-operators illustrated in Fig. 8.9 actually implying commutation

[B(u), B(v)] = 0 (8.32)

Now we look at products of A and B and again use a graphical represen-
tation shown in Fig. 8.10. We algebraically find

A(u)B(v) =
a(v − u)
b(v − u)

B(v)A(u)− c(v − u)
b(v − u)

B(u)A(v). (8.33)

u

v
v − u

v

u
v − u=

T (u)⊗ T (v)R(v − u) = R(v − u)T (v)⊗ T (u)
Fig. 8.8. Graphical depiction of the YBE
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2
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2

21

1

2 1

11 2

B(u)B(v)a(v − u) = a(v − u)B(v)B(u)
Fig. 8.9. Quadratic relation of B-operators obtained from fixing the spins on the
left and right open bonds in Fig. 8.8. Note that the summation over the spin
variables on the closed bonds between R and T matrices reduces to just one non-
vanishing term on each side of the equation

2
=

1

1/2

2/1 1

1

1 2

11 1 1

B(u)A(v)c(v − u) +A(u)B(v)b(v − u) = a(v − u)B(v)A(u)
Fig. 8.10. Bilinear relation of B and A-operators obtained from fixing the spins
on the left and right open bonds in Fig. 8.8. Note that the summation over the
spin variables on the closed bonds between R and T matrices reduces to two non-
vanishing terms on the left side of the equation and to one non-vanishing term on
the right side of the equation

2
=

1

2

2

2 2

1

2

1/2

2/1 2

2

B(u)D(v)a(v − u) = c(v − u)B(v)D(u) + b(v − u)D(v)B(u)
Fig. 8.11. Bilinear relation of B and D-operators obtained in analogy to the above
cases

In a similar same way, illustrated in Fig. 8.11, we obtain (after interchan-
ging u↔ v)

D(u)B(v) =
a(u− v)
b(u− v)

B(v)D(u)− c(u− v)
b(u− v)

B(u)D(v). (8.34)

Now we have available all necessary relations for evaluating the applica-
tion of T (u) to |Ω1〉. By use of the commutation relations we get

T (u) |Ω1(v)〉 =
[
α(u)

a(v − u)
b(v − u)

+ β(u)
a(u− v)
b(u− v)

]
|Ω1(v)〉

−
[
α(v)

c(v − u)
b(v − u)

+ β(v)
c(u− v)
b(u− v)

]
B(u) |Ω〉 , (8.35)

where we have used the abbreviations α = aN , β = bN . The terms in the
first (second) line of the r.h.s. of (8.35) are called “wanted terms” (“unwanted
terms” ) and arise due to the first (second) terms on the r.h.s. of (8.33,8.34).
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In order that |Ω1(v)〉 be an eigenstate of the transfer matrix the second term
in (8.35) has to vanish and the first one to give the eigenvalue2

α(v)
β(v)

= −c(u− v)b(v − u)
c(v − u)b(u− v)

= 1, (8.36)

Λ(u) = α(u)
a(v − u)
b(v − u)

+ β(u)
a(u− v)
b(u− v)

. (8.37)

We can generalize this to any n-particle state. The argument is quite the
same as for just one excitation. We look at the following state

|Ω(vi)〉 =
n∏

i=1

B(vi) |Ω〉 (8.38)

where the numbers vi will be referred to as Bethe ansatz roots. Demanding
that this state be an eigenstate of T (u) we get after successive application of
the commutation rules the following set of equations. From the two “wanted
terms” the eigenvalue is read off

Λ(u) = α(u)
n∏

j=1

a(vj − u)
b(vj − u)

+ β(u)
n∏

j=1

a(u− vj)
b(u− vj)

, (8.39)

and vanishing of the “unwanted terms” yields

α(vi)
β(vi)

=
n∏

j( �=i)

b(vj − vi)
b(vi − vj)

, for i = 1, ..., n. (8.40)

The last constraints are nothing but the famous Bethe ansatz equations.
We like to note that we would have obtained the same set of equations by
demanding that the function on the r.h.s. of (8.39) be analytic in the whole
complex plane

Res Λ(u = vi) = 0 ∀ i. (8.41)

In the case of a general transfer matrix T
(
v; {u(1)

k }; {u(2)
k }
)

defined as a

product of N1 many vertices of type R and N2 many vertices of type R̃ with
spectral parameter v in the auxiliary space (corresponding to the continuous
line) and u

(1)
k , u(2)

k in the quantum spaces the eigenvalue expression is very
similar to (8.39) and (8.40). The only change is the replacement

α(u) = e+βh/2
N1∏

k=1

a(u− u
(1)
k )

N2∏

k=1

b(u(2)
k − u), (8.42)

β(u) = e−βh/2
N1∏

k=1

b(u− u
(1)
k )

N2∏

k=1

a(u(2)
k − u), (8.43)

2 For the sake of transparency of the algebraic structure we do not use the fact
that by our convention the Boltzmann weight a is identical to 1.
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where we have also introduced exp(±βh/2) factors arising from twisted bo-
undary conditions for the transfer matrix as realized in the case of the quan-
tum transfer matrix for a system in a magnetic field h.

We may simplify the following presentation if we perform a rotation by
π/2 in the complex plane, i.e. we introduce a function λ by λ(v) = Λ(iv)
and for convenience we replace vj → ivj . The eigenvalue expression for any
eigenvalue λ(v) of the transfer matrix T reads (see also [22])

λ(v) = α(iv)
n∏

j=1

a(ivj − iv)
b(ivj − iv)

+ β(iv)
n∏

j=1

a(iv − ivj)
b(iv − ivj)

. (8.44)

Of particular importance is the case of the quantum transfer matrix with
N1 = N2 = N/2 and all u(1)

k = τ , u(2)
k = −τ with τ = 2 sin γ

γ
β
N , note the

normalization factor in (8.25).
Introducing the definition

s(v) := sinh(γv/2), (8.45)

we obtain for the functions b, α, β

b(iv) =
s(v)

s(v − 2i)
,

α(iv) = eβh/2
[

s(v − iτ)
s(v − iτ + 2i)

]N/2

, β(iv) = e−βh/2
[

s(v + iτ)
s(v + iτ − 2i)

]N/2

.(8.46)

From (8.44) we obtain for the function λ(v)

λ(v) =
λ1(v) + λ2(v)

[s(v − i(2− τ))s(v + i(2− τ))]N/2 , (8.47)

where the terms λ1,2(v) are

λ1(v) := e+βh/2φ(v − i)
q(v + 2i)
q(v)

,

λ2(v) := e−βh/2φ(v + i)
q(v − 2i)
q(v)

, (8.48)

and φ(v) is simply

φ(v) := [s(v − i(1− τ))s(v + i(1− τ))]N/2
. (8.49)

The function q(v) is defined in terms of the yet to be determined Bethe ansatz
roots vj

q(v) :=
∏

j

s(v − vj). (8.50)
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Note that we are mostly interested in Λ which is obtained from λ(v) simply by
setting v = 0. Nevertheless, we are led to the study of the full v-dependence
since the condition fixing the values of vj is the analyticity of λ1(v) + λ2(v)
in the complex plane. This yields

a(vj) = −1, (8.51)

where the function a(v) (not to be confused with the Boltzmann weight a(w)
above) is defined by

a(v) :=
λ1(v)
λ2(v)

= eβhφ(v − i)q(v + 2i)
φ(v + i)q(v − 2i)

. (8.52)

Algebraically, we are dealing with a set of coupled non-linear equations simi-
lar to those occurring in the study of the eigenvalues of the Hamiltonian [22].
Analytically, there is a profound difference as here in (8.52) the ratio of φ-
functions possesses zeros and poles converging to the real axis in the limit
N →∞. As a consequence, the distribution of Bethe ansatz roots is discrete
and shows an accumulation point at the origin, cf. Fig. 8.12. Hence the tre-
atment of the problem by means of linear integral equations for continuous
density functions [40] is not possible in contrast to the Hamiltonian case.

Fig. 8.12. Sketch of the distribution of Bethe ansatz roots vj for finite N . Note
that the distribution remains discrete in the limit of N → ∞ for which the origin
turns into an accumulation point

8.5 Manipulation of the Bethe Ansatz Equations

The eigenvalue expression (8.47) under the subsidiary condition (8.51) has
to be evaluated in the limit N → ∞. This limit is difficult to take as an
increasing number N/2 of Bethe ansatz roots vj has to be determined. In the
Hamiltonian case, i.e. for (8.42) with N1 = N and N2 = 0 (or vice versa),
the distribution of roots is continuous and the Bethe ansatz equations (8.40)
can be reduced to linear integral equations [22,40]. For the general case, this
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is no longer possible. In this case, notably for the QTM, the distribution of
the roots is discrete and the standard approach based on continuous density
functions is not possible. From now on we explicitly discuss the QTM case,
i.e. (8.42) with N1 = N2 = N/2 yielding all information on the free energy at
arbitrary temperature T including the limit T = 0. (With some modifications,
the final non-linear integral equations also apply in the case of the row-to-
row transfer matrix and the Hamiltonian. These results, however, are not of
prime interest to this review.)

8.5.1 Derivation of Non-linear Integral Equations

The main idea of our treatment is the derivation of a set of integral equations
for the function a(v). This function possesses zeros and poles related to the
Bethe ansatz roots vj , see Fig. 8.13. Next we define the associated auxiliary
function A(v) by

A(v) = 1 + a(v). (8.53)

The poles of A(v) are identical to those of a(v). However, the set of zeros is
different. From (8.51) we find that the Bethe ansatz roots are zeros of A(v)
(depicted by open circles in Fig. 8.14). There are additional zeros farther
away from the real axis with imaginary parts close to ±2. For the sake of
completeness, these zeros are depicted in Fig. 8.14 (open squares), but for a
while they are not essential to our reasoning. Next we are going to formulate
a linear integral expression for the function log a(v) in terms of logA(v). To
this end we consider the function

f(v) :=
1

2πi

∫

L

d

dv
log s(v − w) logA(w)dw (8.54)

v  −2ij

v  +2ij2i−i 

−2i+i 

−i 

τi 

τ

τ

τ

Fig. 8.13. Distribution of zeros (◦) and poles (×) of the auxiliary function a(v).
All zeros and poles vj ∓ 2i are of first order, the zeros and poles at ±(2i − iτ), ±iτ
are of order N/2
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vj

v  +2ij

L

−i 

−2i+i 

τ

τ

Fig. 8.14. Distribution of zeros and poles of the auxiliary function A(v) = 1+a(v).
Note that the positions of zeros (◦) and poles (×) are directly related to those
occurring in the function a(v). There are additional zeros (�) above and below the
real axis. The closed contour L by definition surrounds the real axis and the zeros
(◦) as well as the pole at −iτ

defined by an integral with closed contour L surrounding the real axis, the
parameters vj and the point −iτ in anticlockwise manner, see Fig. 8.14. Note
that the number of zeros of A(v) surrounded by this contour is N/2 and
hence is identical to the order of the pole at −iτ . Therefore the integrand
logA(w) does not show any non-zero winding number on the contour and
consequentially the integral is well-defined. By use of standard theorems we
see that the function f(v) is analytic in the complex plane away from the real
axis (and axes with imaginary parts being integer multiples of 2π/γ). Next
we perform an integration by parts and apply Cauchy’s theorem

f(v) =
∑

j

log s(v − vj)−N/2 log s(v + iτ) = log
q(v)

s(v + iτ)N/2 , (8.55)

Thanks to (8.54) and (8.55) we have a linear integral representation of
log q(v) in terms of logA(v). Because of (8.52) the function log a(v) is a linear
combination of log q and explicitly known functions leading to

log a(v) = βh+ log
(
s(v − iτ)s(v + 2i + iτ)
s(v + iτ)s(v + 2i− iτ)

)N/2

+ f(v + 2i)− f(v − 2i).

(8.56)

From now on we use a shorthand notation for the logarithmic derivative of
s(v)

d(v) :=
d

dv
log s(v) =

γ

2
coth

γ

2
v. (8.57)

By use of the definition of the integration kernel κ
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κ(u) :=
1

2πi
d

du
log

s(u− 2i)
s(u+ 2i)

=
1

2πi
[d(u− 2i)− d(u+ 2i)] =

γ

2π
sin 2γ

cosh γu− cos 2γ
,

(8.58)

we may write (8.56) as

log a(v) = βh+
N

2
log
(
s(v − iτ)s(v + 2i + iτ)
s(v + iτ)s(v + 2i− iτ)

)
−
∫

L
κ(v − w) logA(w)dw.

(8.59)

This expression for a(v) is remarkable as it is a non-linear integral equation
(NLIE) of convolution type. It is valid for any value of the Trotter number
N which only enters in the driving (first) term on the r.h.s. of (8.59). This
term shows a well-defined limiting behaviour for N →∞

N

2
log
(
s(v − iτ)s(v + 2i + iτ)
s(v + iτ)s(v + 2i− iτ)

)
→ iNτ

[
d

dv
log s(v + 2i)− d

dv
log s(v)

]

= iβ2
sin γ
γ

[d(v + 2i)− d(v)], (8.60)

leading to a well-defined NLIE for a(v) even in the limit N →∞

log a(v) = βh+ βε0(v + i)−
∫

L
κ(v − w) logA(w)dw, (8.61)

where ε0 is defined by

ε0(v) = i[d(v + i)− d(v − i)] = 2
sin2 γ

cosh γv − cos γ
. (8.62)

This NLIE allows for a numerical (and in some limiting cases also analytical)
calculation of the function a(v) on the axes '(v) = ±1. About the historical
development we like to note that NLIEs very similar to (8.61) were derived
for the row-to-row transfer matrix in [41, 42]. These equations were then
generalized to the related cases of staggered transfer matrices (QTMs) of the
Heisenberg and RSOS chains [34,35] and the sine-Gordon model [43].

8.5.2 Integral Expressions for the Eigenvalue

In (8.59) and (8.61) we have found integral equations determining the func-
tion a for finite and infinite Trotter number N , respectively. The remaining
problem is the derivation of an expression for the eigenvalue λ in terms of a
or A.

From (8.47) we see that λ(v) is an analytic function with periodicity in
imaginary direction (period 2πi/γ) and exponential asymptotics along the
real axis. Hence, up to a multiplicative constant C, we can write
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λ1(v) + λ2(v) = C
∏

l

s(v − wl), (8.63)

where wl, l = 1, ..., N , are the zeros of λ(v) = λ1(v)+λ2(v) which are solutions
to a(v) = λ1(v)/λ2(v) = −1, i.e. zeros of A(v) = 1+a(v) that do not coincide
with Bethe ansatz (BA) roots! These zeros are so-called hole-type solutions
to the BA equations. The holes are located in the complex plane close to the
axes with imaginary parts ±2, see zeros in Fig. 8.14 depicted by �. Thanks
to Cauchy’s theorem we find for v in the neighbourhood of the real axis

1
2πi

∫

L
d(v − w − 2i)[logA(w)]′dw =

∑

j

d(v − vj − 2i)− N

2
d(v + iτ − 2i)

(8.64)

as the only singularities of the integrand surrounded by the contour L are
the simple zeros vj and the pole −iτ of order N/2 of the function A. Also,
for v in the neighbourhood of the real axis we obtain

1
2πi

∫

L
d(v − w)[logA(w)]′dw =

∑

j

d(v − vj − 2i)−
∑

l

d(v − wl)

+
N

2
d(v + 2i− iτ), (8.65)

where the evaluation of the integral has been done by use of the singularities
outside of the contour L and use of the period 2πi/γ of the integrand. The
old contour L is replaced by a contour L̃ such that the upper (lower) part of
L̃ is the lower part of L (the upper part of L shifted by −2πi/γ), and reversed
orientation. The surrounded singularities are the simple poles vj +2i−2πi/γ,
the zeros wl with or without shift −2πi/γ, and the pole iτ − 2i of order N/2
of the function A.

Next, we take the difference of (8.64) and (8.65), perform an integration
by parts with respect to w, and finally integrate with respect to v

1
2πi

∫

L
[d(v − w)− d(v − w − 2i)] logA(w)dw

= log
[s(v − i(2− τ))s(v + i(2− τ))]N/2

∏
l s(v − wl)

+ const. (8.66)

Combining (8.63), (8.66) and (8.47) we find

log λ(v) = −βh/2− 1
2πi

∫

L
[d(v − w)− d(v − w − 2i)] logA(w)dw, (8.67)

where the constant was determined from the asymptotic behaviour for v →∞
and use of λ(∞) = exp(βh/2) + exp(−βh/2) and A(∞) = 1 + exp(βh).

These formulas, (8.67) and (8.61), are the basis of an efficient analytical
and numerical treatment of the thermodynamics of the Heisenberg chain.



370 A. Klümper

There are, however, variants of these integral equations that are somewhat
more convenient for the analysis, especially for magnetic fields close to 0. The
alternative integral expression for Λ reads [34,35]

lnΛ = −βe0 +
∫ ∞

−∞
K(x) ln[A(x)A(x)]dx, K(x) =

1
4 cosh π

2x
, (8.68)

where A(x) and A(x) are complex-valued functions with integration paths
along the real axis. These functions are determined from the following set of
non-linear integral equations

ln a(x) = −β sin γ
γ

π

cosh π
2x

+
πβh

2(π − γ)
+ κ ∗ lnA(x)− κ ∗ lnA(x+ 2i),

(8.69)

ln a(x) = −β sin γ
γ

π

cosh π
2x
− πβh

2(π − γ)
+ κ ∗ lnA(x)− κ ∗ lnA(x− 2i),

(8.70)

A(x) = 1 + a(x), A(x) = 1 + a(x). (8.71)

The symbol ∗ denotes the convolution f ∗ g(x) =
∫∞

−∞ f(x − y)g(y)dy and
the function κ(x) is defined by

κ(x) =
1
2π

∫ ∞

−∞

sinh
(

π
γ − 2

)
k

2 cosh k sinh
(

π
γ − 1

)
k

eikxdk. (8.72)

Note that the integrals in (8.69) and (8.70) are well-defined with integration
paths just below and above the real axis.

The above equations are obtained from (8.61) by a partial “particle-hole”
transformation of the function a(v) only on the axis '(v) = −1. Replacing
logA = logA + log a (where a = 1/a, A = 1 + a) on the lower part of
L in (8.61) leads to an equation involving convolution type integrals with
logA, logA and log a. This equation can be resolved explicitly for log a by
straightforward calculations in “momentum space”. Finally, a(x) := a(x+ i)
and a(x) := a(x− i).

8.6 Numerical Results for Thermodynamical Quantities

By numerical integration and iteration the integral equation (8.61) can be
solved on the axes '(v) = ±1 defining functions a±(x) := a(x ± i). Alter-
natively and particularly convenient for the case of vanishing magnetic field
h, equations (8.69) and (8.70) can be used for the functions a and a. Choo-
sing appropriate initial functions the series a±

k with k = 0, 1, 2, . . . converges
rapidly. In practice only a few steps are necessary to reach high-precision
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results. Moreover, using the well-known Fast Fourier Transform algorithm
we can compute the convolutions very efficiently. In fact, some of the convo-
lutions in (8.61) or (8.69,8.70) are delicate to be evaluated in “real space”,
because of the appearance of a pole of the kernel just at the integration
contour. These integrals are automatically handled correctly in “momentum
space”.

In order to calculate derivatives of the thermodynamical potential with
respect to temperature T and magnetic field h one can avoid numerical dif-
ferentiations by utilizing similar integral equations guaranteeing the same
numerical accuracy as for the free energy. The idea is as follows. Consider
the function

laβ :=
∂

∂β
log a with

∂

∂β
log(1 + a) =

1
1 + a

∂a

∂β
=

a

1 + a
laβ ,

we directly obtain from (8.61) a linear integral equation for laβ if we regard
the function a as given. Once the integral equation (8.61) is solved for a,
the integral equation for laβ associated with (8.61) can be solved. In this
manner, we may continue to any order of derivatives with respect to T (and
h). However, in practice only the first and second orders matter. Here we
restrict our treatment to the specific heat c(T ) and the magnetic susceptibility
χ(T ) (derivatives of second order with respect to T and h), see Figs. 8.15
and 8.16.

Note the characteristic behaviour of c(T ) and χ(T ) at low temperatures.
The linear behaviour of c(T ) and the finite ground-state limit of χ(T ) are
manifestations of the linear energy-momentum dispersion of the low-lying ex-
citations (spinons) of the isotropic antiferromagnetic Heisenberg chain. Also,
with increase of the repulsion ∆ the location of the finite temperature ma-

Fig. 8.15. Specific heat c(T ) data versus temperature T for the spin-1/2 XXZ
chain with repulsive interaction 0 ≤ ∆ ≤ 1
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Fig. 8.16. Susceptibility χ(T ) data versus temperature T for the spin-1/2 XXZ
chain with repulsive interaction 0 ≤ ∆ ≤ 1

ximum in c(T ) shifts to higher temperatures and the values of χ(T ) drop.
In the high temperature limit the asymptotics of c(T ) and χ(T ) are 1/T 2

and 1/T . This and the existence of the finite temperature maximum are a
consequence of the finite dimensional local degree of freedom, i.e. the spin
per lattice site.

For ∆ = 1 note that χ(T ) approaches the ground-state limit χ(0) in a
singular manner, see also Fig. 8.17. The numerical data at extremely low
temperatures provide evidence of logarithmic correction terms, see also [44]
and later lattice studies [45, 46] confirming the field theoretical treatment
by [47]. These logarithmic terms are responsible for the infinite slope of χ(T )
at T = 0 despite the finite ground-state value χ(0) = 1/π2. Precursors of such
strong slopes have been seen in experiments down to relatively low tempera-
tures, see e.g. [48]. Unfortunately, most quasi one-dimensional quantum spin
systems undergo a phase transition at sufficiently low temperatures driven by
residual higher dimensional interactions. Hence the onset of quantum critical
phenomena of the Heisenberg chain at T = 0 becomes visible, but cannot be
identified beyond all doubts.

8.7 Thermal Transport

The simplest approach to the investigation of transport properties is based on
linear response theory leading to the Kubo formulas [49,50] relating conduc-
tivities to dynamical correlation functions of local current operators. Hence,
the calculation of transport properties is more difficult than the computa-
tion of the free energy. In fact, the calculation of correlation functions is a
most difficult issue and exact results are rare, even for integrable systems. In
some situations, however, the explicit computation of correlation functions
can be avoided. For the spin transport of the Heisenberg chain (≡ electrical
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Fig. 8.17. Magnetic susceptibility χ at low temperature T for the isotropic spin-1/2
XXX chain. In the inset χ(T ) is shown on a larger temperature scale

transport of the model in the particle representation) the Drude weight of
the dynamical conductivity can be cast into a form involving only spectral
properties without explicit recourse to matrix elements. At the time of writ-
ing, these expressions are known how to be evaluated for zero temperature,
the case of non-zero temperature is still controversial.

A fortuitous case is the thermal transport as the thermal current JE is
one of the conserved currents J (n) (8.10). The first three conserved currents
(n = 0, 1, 2) are related to the momentum operator, the Hamiltonian and the
thermal current via

P = −iJ (0) (8.73)

H = 2
sin γ
γ
J (1) − L

2
∆,

JE = i
(

2
sin γ
γ

)2

J (2) + iL. (8.74)

Note that the spin current (electrical current) is not conserved as it is not
contained in the sequence of conserved currents J (n)!

Let us first motivate that J (2) is indeed the thermal current JE of the
system. To this end we impose the continuity equation relating the time
derivative of the local Hamiltonian (interaction) and the divergence of the
current: ḣ = −div jE. The time evolution of the local Hamiltonian hk,k+1 is
obtained from the commutator with the total Hamiltonian and the divergence
of the local current on the lattice is given by a difference expression
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∂hkk+1(t)
∂t

= i[H,hkk+1(t)] = −{jEk+1(t)− jEk (t)}. (8.75)

Apparently the last equation is satisfied with a local thermal current operator
jEk defined by

jEk = i[hk−1k, hkk+1]. (8.76)

In fact, up to a trivial scale and shift, the conserved current J (2) is identical
to the r.h.s. of the upper equation, see also [51–56].

The Kubo formulas [49, 50] are obtained within linear response theory
and yield the (thermal) conductivity κ relating the (thermal) current JE to
the (temperature) gradient ∇T

JE = κ∇T, (8.77)

where

κ(ω) = β

∫ ∞

0
dte−iωt

∫ β

0
dτ〈JE(−t− iτ)JE〉. (8.78)

As the total thermal current operator JE commutes with the Hamiltonian H
of the XXZ chain we find

κ(ω) =
1

i(ω − iε)
β2〈J 2

E〉, (ε→ 0+), (8.79)

with )κ(ω) = κ̃δ(ω) where

κ̃ = πβ2〈J 2
E〉. (8.80)

As a consequence, the thermal conductivity at zero frequency is infinite! This
is only natural, as the conserved current cannot decay in time. However, the
weight of the zero-frequency peak is some finite and non-trivial temperature
dependent quantity to be calculated from the second moment of the thermal
current.

Quite generally, the expectation values of conserved quantities may be
calculated by use of a suitable generating function

Z = Tr exp(−βH+ λJE), (8.81)

from which we find the expectation values by derivatives with respect to λ
at λ = 0

∂

∂λ
lnZ

∣∣∣
λ=0

= 〈JE〉 = 0,
(
∂

∂λ

)2

lnZ
∣∣∣
λ=0

= 〈J 2
E〉 − 〈JE〉2 = 〈J 2

E〉,

(8.82)

where we have used that the expectation value of the thermal current in
thermodynamical equilibrium is zero.
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Instead of Z we will find it slightly more convenient to work with a par-
tition function

Z = Tr exp(−λ1J (1) − λnJ (n)), (8.83)

notably n = 2. With view to (8.74) we choose

λ1 = β

(
2
sin γ
γ

)
, λ2 = −iλ

(
2
sin γ
γ

)2

, (8.84)

and obtain the desired expectation values from Z

〈J 2
E〉 =

(
∂

∂λ

)2

lnZ
∣∣∣
λ=0

. (8.85)

We can deal with Z rather easily. Consider the trace of a product of N
row-to-row transfer matrices T (uj) with some spectral parameters uj close
to zero, but still to be specified, and the Nth power of the inverse of T (0)

ZN = Tr
[
T (u1) · · · · · T (uN ) · T (0)−N

]

= Tr exp




∑

j

[lnT (uj)− lnT (0)]



 . (8.86)

Now it is a standard exercise in arithmetic to devise a sequence of N numbers
u1,...,uN (actually uj = u

(N)
j ) such that

lim
N→∞

∑

j

[f(uj)− f(0)] = −λ1
∂

∂u
f(u)

∣∣∣
u=0

− λn

(
∂

∂u

)n

f(u)
∣∣∣
u=0

. (8.87)

We only need the existence of such a sequence of numbers, the precise values
are actually not important. In the limit N →∞ we note

lim
N→∞

ZN = Z. (8.88)

We can proceed along the established path of the quantum transfer matrix
(QTM) formalism presented above and derive the partition function ZN in
the thermodynamic limit L→∞

lim
L→∞

Z
1/L
N = Λ, (8.89)

where Λ is the largest eigenvalue of the QTM. The integral expression for Λ
reads

lnΛ =
∑

j

[e(uj)− e(0)] +
∫ ∞

−∞
K(x) ln[A(x)A(x)]dx, (8.90)
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with K(x) already defined in (8.68) and some function e(x) given in [34,35].
In the limit N → ∞ the first term on the r.h.s. of the last equation turns
into

lim
N→∞

∑

j

[e(uj)− e(0)] = −λ1
∂

∂u
e(u)

∣∣∣
u=0

− λn

(
∂

∂u

)n

e(u)
∣∣∣
u=0

, (8.91)

a rather irrelevant term as it is linear in λ1 and λn, and therefore the second
derivatives with respect to λ1 and λn vanish. The functions A(x) and A(x)
are determined from the following set of non-linear integral equations

ln a(x) =
∑

j

[ε0(x− iuj)− ε0(0)] + κ ∗ lnA(x)− κ ∗ lnA(x+ 2i),

ln a(x) =
∑

j

[ε0(x− iuj)− ε0(0)] + κ ∗ lnA(x)− κ ∗ lnA(x− 2i),

A(x) = 1 + a(x), A(x) = 1 + a(x). (8.92)

with a function ε0(x) given in terms of hyperbolic functions [34, 35]. Again,
the summations in (8.92) can be simplified in the limit N →∞

lim
N→∞

∑

j

[ε0(x− iuj)− ε0(x)] = −λ1

(
−i

∂

∂x

)
ε0(x)

︸ ︷︷ ︸
=:ε1(x)

−λn

(
−i

∂

∂x

)n

ε0(x)
︸ ︷︷ ︸

=:εn(x)

.

(8.93)

where the first function can be found in [34,35] and is simply

ε1(x) = 2πK(x) =
π

2 cosh π
2x

, (8.94)

and hence the second function is

εn(x) =
(
−i

∂

∂x

)n−1

ε1(x). (8.95)

We like to note that the structure of the driving term (8.93) appearing in
the NLIE (8.92) reflects the structure of the generalized Hamiltonian in the
exponent on the r.h.s. of (8.83). We could have given an alternative derivation
of the NLIE along the lines of the thermodynamic Bethe ansatz (TBA).
In such an approach the driving term is typically the one-particle energy
corresponding to the generalized Hamiltonian. Hence it has contributions
due to the first as well as the nth logarithmic derivative of the row-to-row
transfer matrix, i.e. the terms ε1 and εn.

In Fig. 8.18 we show κ̃(T ) for various anisotropy parameters γ. Note that
κ̃(T ) has linear T dependence at low temperatures. At high temperatures
κ̃(T ) behaves like 1/T 2.
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Fig. 8.18. Illustration of numerical results for the thermal conductivity κ̃ as a
function of temperature T for various anisotropy parameters ∆ = cos γ with γ =
0, π/6, π/5, π/4, π/3, π/2

8.8 Summary

We have reviewed the treatment of integrable quantum systems at zero and
finite temperature based on a lattice path integral formulation and the defi-
nition of the so-called quantum transfer matrix (QTM). In detail, the ther-
modynamical properties of the partially anisotropic Heisenberg chain were
discussed. As we hope, a transparent analysis of the eigenvalue problem of
the row-to-row and quantum transfer matrices has been given, resulting in
a set of non-linear integral equations (NLIE). From a numerical solution of
these NLIEs at arbitrary temperature the specific heat and magnetic suscep-
tibility data were obtained. Also the Drude weight of the thermal current
was calculated. Although we have given the explicit results only for the case
of vanishing magnetic field (h = 0), the derivation of the free energy is not
restricted to this case. In fact, the NLIEs given above are valid even in the
case of non-vanishing fields h. However, the above treatment of the thermal
conductivity is limited to the case h = 0. The generalization to arbitrary
fields is an open problem as is practically any physical question involving the
explicit knowledge of correlation functions at zero and even more at finite
temperature.
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The purpose of writing this review was to convince the reader that re-
search on integrable quantum systems is an attractive and rewarding field
of science. Hopefully, this goal has been reached and the reader has gained
from this presentation enough insight to begin or continue his or her own
investigations.
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34. A. Klümper, Ann. Physik 1(7), 540–553 (1992).
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Abstract. This article contains a theoretical overview of the physical properties
of antiferromagnetic Mott insulators in spatial dimensions greater than one. Many
such materials have been experimentally studied in the past decade and a half,
and we make contact with these studies. Mott insulators in the simplest class have
an even number of S = 1/2 spins per unit cell, and these can be described with
quantitative accuracy by the bond operator method: we discuss their spin gap and
magnetically ordered states, and the transitions between them driven by pressure
or an applied magnetic field. The case of an odd number of S = 1/2 spins per unit
cell is more subtle: here the spin gap state can spontaneously develop bond order
(so the ground state again has an even number of S = 1/2 spins per unit cell),
and/or acquire topological order and fractionalized excitations. We describe the
conditions under which such spin gap states can form, and survey recent theories
of the quantum phase transitions among these states and magnetically ordered
states. We describe the breakdown of the Landau-Ginzburg-Wilson paradigm at
these quantum critical points, accompanied by the appearance of emergent gauge
excitations.

9.1 Introduction

The physics of Mott insulators in two and higher dimensions has enjoyed
much attention since the discovery of cuprate superconductors. While a quan-
titative synthesis of theory and experiment in the superconducting materials
remains elusive, much progress has been made in describing a number of
antiferromagnetic Mott insulators. A number of such insulators have been
studied extensively in the past decade, with a few prominent examples being
CaV4O9 [1], (C5H12N2)2Cu2Cl4 [2–4], SrCu2(BO3)2 [5, 6], TlCuCl3 [7–10],
and Cs2CuCl4 [11,12]. In some cases, it has even been possible to tune these
insulators across quantum phase transitions by applied pressure [8] or by an
applied magnetic field [3,4,7,9]. A useful survey of some of these experiments
may be found in the recent article by Matsumoto et al. [10].

It would clearly be valuable to understand the structure of the global
phase diagram of antiferromagnetic Mott insulators above one dimension.
The compounds mentioned above would then correspond to distinct points
in this phase diagram, and placing them in this manner should help us bet-
ter understand the relationship between different materials. One could also
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classify the quantum critical points accessed by the pressure or field-tuning
experiments. The purpose of this article is to review recent theoretical work
towards achieving this goal. We will focus mainly on the case of two spatial
dimensions (d), but our methods and results often have simple generalizations
to d = 3.

One useful vantage point for opening this discussion is the family of Mott
insulators with a gap to all spin excitations. All spin gap compounds dis-
covered to date have the important property of being “dimerized”, or more
precisely, they have an even number of S = 1/2 spins per unit cell [13]. In
such cases, the spin gap can be understood by adiabatic continuation from
the simple limiting case in which the spins form local spin singlets within
each unit cell. A simple approach that can be used for a theoretical descrip-
tion of such insulators is the method of bond operators [14,15]. This method
has been widely applied, and in some cases provides an accurate quantitative
description of numerical studies and experiments [10,16]. We will describe it
here in Sect. 9.2 in the very simple context of a coupled dimer antiferroma-
gnet; similar results are obtained in more complicated, and realistic, lattice
structures. Sect. 9.2 will also describe the quantum phase transition(s) ac-
cessed by varying coupling constants in the Hamiltonian while maintaining
spin rotation invariance (this corresponds to experiments in applied pres-
sure): the spin gap closes at a quantum critical point beyond which there is
magnetic order. Section 9.2.3 will discuss some of the important experimen-
tal consequences of this quantum criticality at finite temperatures. A distinct
quantum critical point, belonging to a different universality class, is obtained
when the spin gap is closed by an applied magnetic field—this is described
in Sect. 9.3.

The remaining sections discuss the theoretically much more interesting
and subtle cases of materials with an odd number of S = 1/2 spins per unit
cell, such as La2CuO4 and Cs2CuCl4. A complementary, but compatible, per-
spective on the physics of such antiferromagnets may be found in the review
article by Misguich and Lhuillier [17]. Antiferromagnets in this class can de-
velop a spin gap by spontaneously breaking the lattice symmetry so that the
lattice is effectively dimerized (see discussion in the following paragraph).
There are no known materials with a spin gap in which the lattice symmetry
has not been broken, but there is a theoretical consensus that spin gap states
without lattice symmetry breaking are indeed possible in d > 1 [18]. The
study of antiferromagnets with an odd number of S = 1/2 spins per unit
cell is also important for the physics of the doped cuprates. These materials
exhibit spin-gap-like behavior at low dopings, and many theories associate
aspects of its physics with the spin gap state proximate to the magnetically
ordered state of the square lattice antiferromagnet found in La2CuO4.

Section 9.4 will describe the nature of a spin gap state on the square lat-
tice. We begin with the nearest-neighbor S = 1/2 Heisenberg Hamiltonian on
the square lattice—this is known to have a magnetic Néel order which breaks
spin rotation invariance. Now add further neighbor exchange couplings until
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magnetic order is lost and a spin gap appears. We will show that the ground
state undergoes a novel, second-order quantum phase transition to a state
with bond order: translational symmetry is spontaneously broken [19, 20] so
that the resulting lattice structure has an even number of S = 1/2 spins per
unit cell. So aspects of the non-zero spin excitations in this paramagnet are
very similar to the “dimerized” systems considered in Sect. 9.2, and expe-
rimentally they will appear to be almost identical. Indeed, it may well be
that the experimental materials initially placed in the class of Sect. 9.2, are
secretely systems in the class of Sect. 9.4 which have developed bond order
driven by the physics of antiferromagets (as in Sect. 9.4.1) at some inter-
mediate energy scale. The host lattice then distorts sympathetically to the
bond order, and is effectively dimerized. Such materials will possess many
more low-lying singlet excitations than those in the theory of Sect. 9.2: these
excitations play an important role in the restoration of translational symme-
try as we move towards the Néel state. Unfortunately, such singlet excitations
are rather difficult to detect experimentally.

Section 9.5 will address the same issue as Sect. 9.4, but for the case of
the triangular lattice. Here the spins are ordered in a non-collinear configu-
ration in the magnetically ordered state, as is observed at low temperatures
in Cs2CuCl4 [11, 12]. We will argue that in this case there is a route to de-
struction of magnetic order in which the resulting spin gap state preserves
full lattice symmetry [21,22]. Such a spin gap state has a novel ‘topological’
order [23] which endows its excitations with charges under an emergent gauge
force. Recent experimental measurements of the dynamic structure factor of
Cs2CuCl4 appear to be described rather well by the excitations of this to-
pologically ordered state at energies above which the magnetic order of the
ground state emerges [12,24].

9.2 Coupled Dimer Antiferromagnet

We begin by describing the quantum phase transition in a simple two-
dimensional model of antiferromagnetically coupled S = 1/2 Heisenberg spins
which has 2 spins per unit cell. The transition is tuned by varying a dimen-
sionless parameter λ. As we noted in Sect. 9.1 different ‘dimerized’ Mott
insulators will correspond to different values of λ, and the value of λ can be
tuned by applying pressure [8, 10].

We consider the “coupled dimer” Hamiltonian [25]

Hd = J
∑

〈ij〉∈A
Si · Sj + λJ

∑

〈ij〉∈B
Si · Sj , (9.1)

where Sj are spin-1/2 operators on the sites of the coupled-ladder lattice
shown in Fig. 9.1, with the A links forming decoupled dimers while the B
links couple the dimers as shown. The ground state of Hd depends only on



384 S. Sachdev

Fig. 9.1. The coupled dimer antiferromagnet. Spins (S = 1/2) are placed on the
sites, the A links are shown as full lines, and the B links as dashed lines.

the dimensionless coupling λ, and we will describe the low temperature (T )
properties as a function of λ. We will restrict our attention to J > 0 and
0 ≤ λ ≤ 1.

Note that exactly at λ = 1, Hd is identical to the square lattice antifer-
romagnet, and this is the only point at which the Hamiltonian has only one
spin per unit cell. At all other values of λ Hd has a pair of S = 1/2 spins in
each unit cell of the lattice. As will become clear from our discussion, this
is a key characteristic which permits a simple theory for the quantum phase
transition exhibited by Hd. Models with only a single S = 1/2 spin per unit
cell usually display far more complicated behavior, and will be discussed in
Sects. 9.4,9.5.

We will begin with a physical discussion of the phases and excitations
of the coupled dimer antiferromagnet, Hd in Sect. 9.2.1. We will propose
a quantum field-theoretical description of this model in Sect. 9.2.2: we will
verify that the limiting regimes of the field theory contain excitations whose
quantum numbers are in accord with the phases discussed in Sect. 9.2.1, and
will then use the field theory to describe the quantum critical behavior both
at zero and finite temperatures.

9.2.1 Phases and Their Excitations

Let us first consider the case where λ is close to 1. Exactly at λ = 1, Hd is
identical to the square lattice Heisenberg antiferromagnet, and this is known
to have long-range, magnetic Néel phase in its ground state i.e. the spin-
rotation symmetry is broken and the spins have a non-zero, staggered, ex-
pectation value in the ground state with

〈Sj〉 = ηjN0n, (9.2)

where n is some fixed unit vector in spin space, ηj is ±1 on the two sublat-
tices, and N0 is the Néel order parameter. This long-range order is expected
to be preserved for a finite range of λ close to 1. The low-lying excitations
above the ground state consist of slow spatial deformations in the orienta-
tion n: these are the familiar spin waves, and they can carry arbitrarily low
energy i.e. the phase is ‘gapless’. The spectrum of the spin waves can be
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(= - )/ /2

Fig. 9.2. Schematic of the quantum paramagnet ground state for small λ. The
ovals represent singlet valence bond pairs.

(a) (b)

Fig. 9.3. (a) Cartoon picture of the bosonic S = 1 excitation of the paramagnet.
(b) Fission of the S = 1 excitation into two S = 1/2 spinons. The spinons are
connected by a “string” of valence bonds (denoted by dashed ovals) which lie on
weaker bonds; this string costs a finite energy per unit length and leads to the
confinement of spinons.

obtained from a text-book analysis of small fluctuations about the ordered
Néel state using the Holstein-Primakoff method [26]: such an analysis yields
two polarizations of spin waves at each wavevector k = (kx, ky) (measured
from the antiferromagnetic ordering wavevector), and they have excitation
energy εk = (c2xk

2
x + c2yk

2
y)1/2, with cx, cy the spin-wave velocities in the two

spatial directions.
Let us turn now to the vicinity of λ = 0. Exactly at λ = 0, Hd is the

Hamiltonian of a set of decoupled dimers, with the simple exact ground state
wavefunction shown in Fig. 9.2: the spins in each dimer pair into valence
bond singlets, leading to a paramagnetic state which preserves spin rotation
invariance and all lattice symmetries. Excitations are now formed by breaking
a valence bond, which leads to a three-fold degenerate state with total spin
S = 1, as shown in Fig. 9.3a. At λ = 0, this broken bond is localized,
but at finite λ it can hop from site-to-site, leading to a triplet quasiparticle
excitation. Note that this quasiparticle is not a spin-wave (or equivalently, a
‘magnon’) but is more properly referred to as a spin 1 exciton or a triplon
[27]. We parameterize its energy at small wavevectors k (measured from the
minimum of the spectrum in the Brillouin zone) by
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0 1λλc

Spin gap paramagnet.
S=1 triplet quasiparticle

excitations

Neel order.
Doublet spin-wave

excitations

Fig. 9.4. Ground states of Hd as a function of λ The quantum critical point is
at [28] λc = 0.52337(3). The compound TlCuCl3 undergoes a similar quantum
phase transition under applied pressure [8].

εk = ∆+
c2xk

2
x + c2yk

2
y

2∆
, (9.3)

where ∆ is the spin gap, and cx, cy are velocities; we will provide an explicit
derivation of (9.3) in Sect. 9.2.2. Figure 9.3 also presents a simple argument
which shows that the S = 1 exciton cannot fission into two S = 1/2 ‘spinons’.

The very distinct symmetry signatures of the ground states and excita-
tions between λ ≈ 1 and λ ≈ 0 make it clear that the two limits cannot
be continuously connected. It is known that there is an intermediate second-
order phase transition at [25, 28] λ = λc = 0.52337(3) between these states
as shown in Fig. 9.4. Both the spin gap ∆ and the Néel order parameter N0
vanish continuously as λc is approached from either side.

9.2.2 Bond Operators and Quantum Field Theory

In this section we will develop a continuum description of the low energy
excitations in the vicinity of the critical point postulated above. There are a
number of ways to obtain the same final theory: here we will use the method
of bond operators [14,15], which has the advantage of making the connection
to the lattice degrees of freedom most direct. We rewrite the Hamiltonian
using bosonic operators which reside on the centers of the A links so that it
is explicitly diagonal at λ = 0. There are 4 states on each A link (|↑↑〉, |↑↓〉,
|↓↑〉, and |↓↓〉) and we associate these with the canonical singlet boson s and
the canonical triplet bosons tα (α = x, y, z) so that



9 Quantum Phases and Phase Transitions of Mott Insulators 387

|s〉 ≡ s†|0〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) ; |tx〉 ≡ t†x|0〉 =
−1√

2
(| ↑↑〉 − | ↓↓〉) ;

|ty〉 ≡ t†y|0〉 =
i√
2

(| ↑↑〉+ | ↓↓〉) ; |tz〉 ≡ t†z|0〉 =
1√
2

(| ↑↓〉+ | ↓↑〉) .(9.4)

Here |0〉 is some reference vacuum state which does not correspond to a
physical state of the spin system. The physical states always have a single
bond boson and so satisfy the constraint

s†s+ t†αtα = 1. (9.5)

By considering the various matrix elements 〈s|S1|tα〉, 〈s|S2|tα〉, . . . , of the
spin operators S1,2 on the ends of the link, it follows that the action of S1
and S2 on the singlet and triplet states is equivalent to the operator identities

S1α =
1
2

(
s†tα + t†αs− iεαβγt

†
βtγ

)
,

S2α =
1
2

(
−s†tα − t†αs− iεαβγt

†
βtγ

)
, (9.6)

where α,β,γ take the values x,y,z, repeated indices are summed over and ε is
the totally antisymmetric tensor. Inserting (9.6) into (9.1), and using (9.5),
we find the following Hamiltonian for the bond bosons:

Hd = H0 +H1

H0 = J
∑

�∈A

(
−3

4
s†

�s� +
1
4
t†�αt�α

)

H1 = λJ
∑

�,m∈A

[
a(�,m)

(
t†�αtmαs

†
ms� + t†�αt

†
mαsms� + H.c.

)
+ b(�,m)

×
(
iεαβγt

†
mαt

†
�βt�γsm + H.c.

)
+ c(�,m)

(
t†�αt

†
mαtmβt�β − t†�αt

†
mβtmαt�β

)]
,(9.7)

where �,m label links in A, and a, b, c are numbers associated with the lattice
couplings which we will not write out explicitly. Note that H1 = 0 at λ = 0,
and so the spectrum of the paramagnetic state is fully and exactly determi-
ned. The main advantage of the present approach is that application of the
standard methods of many body theory to (9.7), while imposing the con-
straint (9.5), gives a very satisfactory description of the phases with λ �= 0,
including across the transition to the Néel state. In particular, an important
feature of the bond operator approach is that the simplest mean field theory
already yields ground states and excitations with the correct quantum num-
bers; so a strong fluctuation analysis is not needed to capture the proper
physics.

A complete numerical analysis of the properties of (9.7) in a self-consistent
Hartree-Fock treatment of the four boson terms in H1 has been presented
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in [14]. In all phases the s boson is well condensed at zero momentum, and
the important physics can be easily understood by examining the structure of
the low energy action for the tα bosons. For the particular Hamiltonian (9.1),
the spectrum of the tα bosons has a minimum at the momentum (0, π), and
for large enough λ the tα condense at this wavevector: the representation
(9.6) shows that this condensed state is the expected Néel state, with the
magnetic moment oscillating as in (9.2). The condensation transition of the
tα is therefore the quantum phase transition between the paramagnetic and
Néel phases of the coupled dimer antiferromagnet. In the vicinity of this
critical point, we can expand the tα bose field in gradients away from the
(0, π) wavevector: so we parameterize

t�,α(τ) = tα(r�, τ)ei(0,π)·r
 (9.8)

where τ is imaginary time, r ≡ (x, y) is a continuum spatial coordinate, and
expand the effective action in spatial gradients. In this manner we obtain

St =
∫

d2rdτ

[
t†α
∂tα
∂τ

+ Ct†αtα −
D

2
(tαtα + H.c.) +K1x|∂xtα|2 +K1y|∂ytα|2

+
1
2
(
K2x(∂xtα)2 +K2y(∂ytα)2 + H.c.

)
+ · · ·

]
. (9.9)

Here C,D,K1,2x,y are constants that are determined by the solution of the
self-consistent equations, and the ellipses represent terms quartic in the tα.
The action St can be easily diagonalized, and we obtain a S = 1 quasiparticle
excitation with the spectrum

εk =
[(
C +K1xk

2
x +K1yk

2
y

)2 −
(
D +K2xk

2
x +K2yk

2
y

)2]1/2
. (9.10)

This is, of course, the triplon (or spin exciton) excitation of the paramagnetic
phase postulated earlier in (9.3); the latter result is obtained by expanding
(9.10) in momenta, with ∆ =

√
C2 −D2. This value of ∆ shows that the

ground state is paramagnetic as long as C > D, and the quantum critical
point to the Néel state is at C = D.

The critical point and the Néel state are more conveniently described by
an alternative formulation of St (although an analysis using bond operators
directly is also possible [29]). It is useful to decompose the complex field tα
into its real and imaginary parts as follows

tα = Z(ϕα + iπα), (9.11)

where Z is a normalization chosen below. Insertion of (9.11) into (9.9) shows
that the field πα has a quadratic term ∼ (C + D)π2

α, and so the coefficient
of π2

α remains large even as the spin gap ∆ becomes small. Consequently, we
can safely integrate πα out, and the resulting action for ϕα takes the form
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Sϕ =
∫

d2rdτ

[
1
2

{
(∂τϕα)2 + c2x (∂xϕα)2 + c2y (∂yϕα)2 + sϕ2

α

}
+

u

24
(
ϕ2

α

)2
]
.

(9.12)

Here we have chosen Z to fix the coefficient of the temporal gradient term,
and s = C2 −D2.

The formulation Sϕ makes it simple to explore the physics in the region
s < 0. It is clear that the effective potential of ϕα has a minimum at a
non-zero ϕα, and that 〈ϕα〉 ∝ N0, the Néel order parameter in (9.2). It is
simple to carry out a small fluctuation analysis about this saddle point, and
we obtain the doublet of gapless spin-wave modes advertised earlier.

We close this subsection by noting that all of the above results have
a direct generalization to other lattices, and also to spin systems in three
dimensions. Matsumoto et al. [10] have applied the bond operator method to
TlCuCl3 and obtained good agreement with experimental observations. One
important difference that emerges in such calculations on some frustrated
lattices [30] is worth noting explicitly here: the minimum of the tα spectrum
need not be at special wavevector like (0, π), but can be at a more generic
wavevector Q such that Q and −Q are not separated by a reciprocal lattice
vector. A simple example which we consider here is an extension of (9.1)
in which there are additional exchange interactions along all diagonal bonds
oriented ‘north-east’ (so that the lattice has the connectivity of a triangular
lattice). In such cases, the structure of the low energy action is different, as
is the nature of the magnetically ordered state. The parameterization (9.8)
must be replaced by

t�α(τ) = t1α(r�, τ)eiQ·r
 + t2α(r�, τ)e−iQ·r
 , (9.13)

where t1,2α are independent complex fields. Proceeding as above, we find that
the low energy effective action (9.12) is replaced by

SΦ =
∫

d2rdτ

[
|∂τΦα|2 + c2x |∂xΦα|2 + c2y |∂yΦα|2 + s |Φα|2

+
u

2

(
|Φα|2

)2
+
v

2

∣∣Φ2
α

∣∣2
]
, (9.14)

where now Φα is a complex field such that 〈Φα〉 ∼ 〈t1α〉 ∼ 〈t†2α〉. Notice that
there is now a second quartic term with coefficient v. If v > 0, configurations
with Φ2

α = 0 are preferred: in such configurations Φα = n1α + in2α, where
n1,2α are two equal-length orthogonal vectors. Then from (9.13) and (9.6)
it is easy to see that the physical spins possess spiral order in the magne-
tically ordered state in which Φα is condensed. A spiral state is illustrated
in Fig. 9.13, and we will have more to say about this state in Sect. 9.5. For
the case v < 0, the optimum configuration has Φα = nαe

iθ where nα is a
real vector: this leads to a magnetically ordered state with spins polarized
collinearly in a spin density wave at the wavevector Q.
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9.2.3 Quantum Criticality

We will restrict our discussion here to the critical point described by Sϕ.
Similar results apply to SΦ for the parameter regime in which it exhibits a
second order transition [31]. Experimentally, the results below are relevant
to materials that can be tuned across the magnetic ordering transition by
applied pressure (such as TlCuCl3 [8]), or to materials which happen to be
near a critical point at ambient pressure (such as LaCuO2.5 [32]).

The field theory Sϕ is actually a familiar and well-studied model in the
context of classical critical phenomena. Upon interpreting τ as a third spatial
coordinate, Sϕ becomes the theory of a classical O(3)-invariant Heisenberg
ferromagnet at finite temperatures (in general a d dimensional quantum anti-
ferromagnet will map to a d+1 dimensional classical Heisenberg ferromagnet
at finite temperature [33]). The Curie transition of the Heisenberg ferroma-
gnet then maps onto the quantum critical point between the paramagnetic
and Néel states described above. A number of important implications for the
quantum problem can now be drawn immediately.

The theory Sϕ has a ‘relativistic’ invariance, and consequently the dyna-
mic critical exponent must be z = 1. The spin correlation length will diverge
at the quantum critical point with the exponent [34] ν = 0.7048(30). The
spin gap of the paramagnet, ∆, vanishes as ∆ ∼ (λc − λ)zν , and this pre-
diction is in excellent agreement with the numerical study of the dimerized
antiferromagnet [28].

A somewhat more non-trivial consequence of this mapping is in the struc-
ture of the spectrum at the critical point λ = λc. At the Curie transition of
the classical ferromagnet it is known [35] that spin correlations decay as
∼ 1/p2−η, where p is the 3-component momentum in the 3-dimensional clas-
sical space. We can now analytically continue this expression from its pz de-
pendence in the third classical dimension to the real frequency, ω, describing
the quantum antiferromagnet. This yields the following fundamental result
for the dynamic spin susceptibility, χ(k, ω), at the T = 0 quantum critical
point of the coupled-dimer antiferromagnet:

χ(k, ω) ∼ 1
(
c2xk

2
x + c2yk

2
y − (ω + iε)2

)1−η/2 , (9.15)

where ε is a positive infinitesimal. Note that in (9.15) the momentum k is
measured from the (π, π) ordering wavevector of the Néel state. The exponent
η is the same as that of the classical Heisenberg ferromagnet, and has a rather
small value [34]: η ≈ 0.03. However, the non-zero η does make a significant
difference to the physical interpretation of the excitations at the critical point.
In particular note that Imχ(k, ω) does not have a pole at any k, but rather
a continuum spectral weight above a threshold energy [36,37]
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Imχ(k, ω) ∼ sgn(ω) sin
(πη

2

) θ
(
|ω| −

√
c2xk

2
x + c2yk

2
y

)

(
ω2 − c2xk

2
x − c2yk

2
y

)1−η/2 , (9.16)

where θ is the unit step function. This indicates there are no quasiparticles
at the critical point, and only a dissipative critical continuum.

There is also some very interesting structure in the quantum critical dyna-
mic response at nonzero T [36,37]. Here, one way to understand the physics
is to approach the critical point from the paramagnetic side (λ < λc). As
we noted earlier, the paramagnetic phase has well-defined ‘triplon’ or ‘spin
exciton’ excitations tα, and these have an infinite lifetime at T = 0. At
T > 0, thermally excited tα quasiparticles will collide with each other via
their scattering amplitude, u, and this will lead to a finite lifetime [37, 38].
Now approach λ = λc. The renormalization group analysis of Sϕ tells us that
the quartic coupling u approaches a fixed point value in the critical region.
This means that u is no longer an arbitrary parameter, and an appropriately
defined tα scattering amplitude must also acquire universal behavior. In par-
ticular, the tα lifetime is determined by the only energy scale available, which
is kBT . So we have the remarkable result that the characteristic spin relaxa-
tion time is a universal number times �/(kBT ). More precisely, we can write
for the local dynamic spin susceptibility χL(ω) =

∫
d2kχ(k, ω) the universal

scaling form

ImχL(ω) = T ηF

(
�ω

kBT

)
. (9.17)

Here F is a universal function which has the limiting behaviors

F (ω) ∼
{
ω , |ω| 
 1
sgn(ω)|ω|η , |ω| � 1 . (9.18)

Note that F has a smooth linear behavior in the regime |�ω| 
 kBT , and
this is similar to any simple dissipative system. The difference here is that
the coefficient of dissipation is determined by kBT alone.

The quantum critical behavior described here is expected to apply more
generally to other correlated electron systems, provided the critical theory
has non-linear couplings which approach fixed point values.

9.3 Influence of an Applied Magnetic Field

An important perturbation that can be easily applied to antiferromagnets in
the class discussed in Sect. 9.2 is a uniform magnetic field. The Zeeman energy
in available fields can often be comparable to the typical antiferromagnetic
exchange constant J , and so the ground state can be perturbed significantly.
It is therefore of interest to understand the evolution of the phase diagram
in Fig. 9.4 under an applied field of arbitrary strength.
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We are interested here in the evolution of the ground state as a function
of B where the Hamiltonian Hd in (9.1) is transformed as

Hd → Hd −
∑

j

B · Sj . (9.19)

Most of the basic features can actually be understood quite easily in a simple
extension of the self-consistent Hartree-Fock theory of bond bosons that was
discussed in Sect. 9.2.2. Under the transformation (9.19), it is easily seen
from (9.6) that

Hd → Hd + iBα

∑

�∈A
εαβγt

†
�βt�γ . (9.20)

The presence of a non-zero B breaks spin rotation invariance and so all the
self-consistent expectation values of operator bilinears have to reflect this
reduced symmetry in the Hartree-Fock theory. Apart from this the mechanics
of the computation mostly remain the same. However, for stronger fields, it
is sometimes necessary to allow for broken translational symmetry in the
expectation values, as the ground state can acquire a modulated structure.

We will discuss the results of such an analysis in weak and strong fields
in the following subsections.

9.3.1 Weak Fields

For weak fields applied to the paramagnet (specifically, for fields B < ∆, the
influence of (9.20) can be understood exactly. The coupling to B involves an
operator which commutes with the remaining Hamiltonian (the total spin),
and hence the wavefunction of the ground state remains insensitive to the
value of B. The same applies to the wavefunctions of the excited states.
However, the excited states can have non-zero total spin and so their energies
do depend upon B. In particular the triplet tα quasiparticle with energy (9.3)
or (9.10) carries total spin S = 1, and consequently we conclude that this
triplet splits according to

εk → εk −mB (9.21)

with m = 0,±1. Note that the lowest energy quasiparticle (with m = 1) has
a positive energy as long as B < ∆, and this is required for the stability of
the paramagnet. So the phase boundary of the paramagnetic phase is exactly
B = ∆, and using ∆ ∼ (λc − λ)zν , we can sketch the boundary of the
paramagnetic phase as in Fig. 9.5.

What happens beyond the paramagnetic phase? As in Sect. 9.2.2, we
answer this question by using the transformation (9.11), and by examining
the analog of Sϕ under a non-zero B. Using (9.20), and integrating out πα,
we now find that the action Sϕ in (9.12) remains unchanged apart from the
mapping [40]
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0 1λλc

Spin gap
paramagnet.

Canted order.

B

Fig. 9.5. Evolution of the phases of Fig. 9.4 under a weak field B (magnetization
plateau at large B, appearing in Fig. 9.6, are not shown). The paramagnetic phase
has exactly the same ground state wavefunction as that at B = 0. The phase
boundary behaves like B ∼ (λc − λ)zν . The B field is oriented vertically upwards,
and the static moments in the canted phase can rotate uniformly about the vertical
axis. The phase boundary at non-zero B is described by the z = 2 dilute Bose gas
quantum critical theory. The phase diagram of TlCuCl3 in applied pressure and
magnetic field looks similar to the one above [10]. The corresponding phase diagram
of the field-induced magnetic ordering transition of a superconductor (rather than
a Mott insulator) has been investigated recently [39], and successfully applied to
experiments on the doped cuprates; this phase diagram of the superconductor has
significant differences from the one above.

(∂τϕα)2 → (∂τϕα + iεαβγBβϕγ)2 . (9.22)

The action (9.12), (9.22) can now be analyzed by a traditional small fluc-
tuation analysis about ϕα = 0. Let us assume that B = (0, 0, B) is oriented
along the z axis. Then the coefficient of ϕ2

z is s, while that of ϕ2
x + ϕ2

y is
s − B2. This suggests that we focus only on the components of ϕα in the
plane orthogonal to B, and integrate out the component of ϕα along the
direction of B. Indeed, if we define

Ψ =
ϕx + iϕy√

B
(9.23)

and integrate out ϕz, then we obtain from (9.12), (9.22) the effective action
for Ψ :

SΨ =
∫

d2rdτ

[
Ψ∗∂τΨ +

c2x
2B

|∂xΨ |2 +
c2y
2B

|∂yΨ |2 − µ|Ψ |2 +
u

24B
|Ψ |4

]
.

(9.24)

Here, µ = (s − B2)/2B, and we have retained only leading order temporal
and spatial gradients and the leading dependence of u. Clearly, this is the
theory of a Bose gas in the grand canonical ensemble at a chemical potential
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µ, with a repulsive short-range interaction [41]. At T = 0, and µ < 0, such a
theory has a ground state which is simply the vacuum with no Bose particles.
Here, this vacuum state corresponds to the spin gap antiferromagnet, and the
B-independence of the ground state of the antiferromagnet corresponds here
to the µ independence of the ground state of SΨ . There is an onset of a finite
density of bosons in SΨ for µ > 0, and this onset therefore corresponds to
the quantum phase transition in the antiferromagnet at B = ∆. So we must
have µ = 0 in SΨ at precisely the point where B = ∆: the value of µ quoted
above shows that this is true at zeroth order in u, and higher order terms in
u must conspire to maintain this result.

The above analysis makes it clear that the µ ≥ 0 region of SΨ will describe
the quantum phase transition out of the paramagnet at non-zero B. This
transition is merely the formation of a Bose-Einstein condensate of the m = 1
component of the triplon bosons. For µ > 0 we have a finite density of Ψ
bosons which Bose condense in the ground state, so that 〈Ψ〉 �= 0. From (9.23)
we see that this Bose condensation corresponds to antiferromagnetic order in
the plane perpendicular to B. Indeed, the phase of this Bose condensate is
simply the orientation of the spins in the x, y plane, and so here this phase
is directly observable. Further, by taking derivatives of (9.19) and SΨ w.r.t.
B, we see that the density of bosons is proportional to the magnetization per
spin, Ω, in the direction parallel to B:

Ω ≡ 1
N

∑

j

〈Sjz〉 ∝ 〈|Ψ |2〉, (9.25)

where N is the total number of spins. Consequently, the average magnetic
moments in the non-paramagnetic phase are in a ‘canted’ configuration, as
shown in Fig. 9.5. The quantum phase transition between the paramagnet
and the canted state is described by the theory of the density onset in a
Bose gas: this theory has z = 2, ν = 1/2, and an upper critical dimension of
d = 2 [41,42].

We conclude this section by noting that interesting recent work [43] has
examined the Bose-Einstein condensation of the m = 1 triplon bosons in a
random potential. This is achieved by studying Tl1−xKxCuCl3, where the
stoichiometric disorder among the non-magnetic ions acts as a random po-
tential on the triplons.

9.3.2 Strong Fields

We have seen above that applying a magnetic field eventually leads to the
onset of a ferromagnetic moment in the directions of the applied field. How
does this moment evolve as we continue to increase the field? Eventually,
B will become so large that it pays to have all the spins polarized in the
direction of the field: this corresponds to a saturation in the magnetization,
and making B even stronger will not change the ground state. In terms of the
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t bosons, this fully polarized state, |FP 〉, with Ω = 1/2, is seen from (9.20)
or (9.4) to correspond exactly to

|FP 〉 =
∏

�

(t†�x + it†�y)
√

2
|0〉. (9.26)

So there must be at least one more quantum phase transition as a B is
increased: this is transition from the |FP 〉 state at very large B to a state
with a continuously varying ferromagnetic moment which eventually reaches
the saturation value from below.

A theory for the transition away from the |FP 〉 state with decreasing
B can be developed using methods very similar to those used in Sect. 9.2.2
and 9.3.1. We treat the quartic terms in (9.7) in a Hartree-Fock approxima-
tion, and examine small fluctuations away from the |FP 〉 state. These are
dominated by excitation which create tz quanta (which have m = 0) on the
dimers, and so the effective theory is expressed in terms of

Ψ̃ † ∼ t†z(tx − ity). (9.27)

Indeed, it is not difficult to see that the resulting theory for Ψ̃ has exactly
the same form as (9.24). Now the µ for Ψ̃ decreases with increasing B, and
we have µ = 0 at the critical field at which |FP 〉 first becomes the ground
state. Furthermore, 〈|Ψ̃ |2〉 now measures the deviation away from Ω = 1/2.
Apart from this ‘inversion’ in the field axis, it is clear that the universality
class of the present transition is identical to that discussed in Sect. 9.3.1.

A further possibility for a plateau in the value of Ω with increasing B
is worth mentioning [44], as analogs are realized in SrCu2(BO3)2 [45] and
NH4CuCl3 [46]. So far we have found plateaus at Ω = 0 for B < ∆, and
at Ω = 1/2 for large B. For the Ω = 1/2 state we had every dimer with a
(t†x+it†y)/

√
2 boson. Now imagine that these bosons form a Wigner-crystalline

state so that there are p such bosons for every q dimers; here 0 ≤ p ≤ q,
q ≥ 1, are integers. Such a state will have Ω = p/(2q), and breaks the
translational symmetry of the underlying dimer antiferromagnet such that
there are q dimers per unit cell (or 2q spins per unit cell). The energy gap
towards boson motion in the Wigner crystal (i.e. its incompressibility) will
ensure that Ω is stable under small variations of B. In this manner we can
obtain a magnetization plateau at Ω = p/(2q) in a state with a unit cell of q
dimers.

We summarize the considerations of this subsection in Fig. 9.6, showing a
possible evolution of Ω in a model similar to Hd in (9.1). As we have already
noted, the plateau onset transitions at Ω = 0 and Ω = 1/2 are both described
by the z = 2 dilute Bose gas theory (9.24). The transitions in and out of other
fractional plateaus are potentially more complicated because these involve
spontaneous breaking of translational symmetry. The translation symmetry
could be restored at the same point at which there is onset of superfluid
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B

Ω

1/2

0

Fig. 9.6. Magnetization density, Ω, defined in (9.25) as a function of the applied
magnetic field. The plateau shown at Ω = 0 is present provided the zero field
state is a paramagnet i.e. λ < λc. The full saturation plateau at Ω = 1/2 is always
present. The plateau at Ω = 1/4 is not present in the nearest-neighbor model Hd in
(9.1), but it is believed that such a plateau will appear upon including frustrating
exchange interactions; this plateau will involve a broken translational symmetry
in the coupled dimer antiferromagnet. Such magnetization plateaux are found in
SrCu2(BO3)2 [45] and NH4CuCl3 [46]

order—this is possibly a first order transition with a jump in the value of
Ω. Alternatively, there could be an intermediate ‘supersolid’ phase, in which
case the plateau transition has the same broken translational symmetry on
both sides of it, placing it also in the class of (9.24).

9.4 Square Lattice Antiferromagnet

This section will address the far more delicate problem of quantum phase
transitions in antiferromagnets with an odd number of S = 1/2 spins per
unit cell. We will mainly concern ourselves with square lattice Hamiltonians
of the form

Hs = J
∑

〈ij〉
Si · Sj + . . . . (9.28)

Here J is a nearest-neighbor antiferromagnetic exchange and the ellipses re-
present further short-range exchange interactions (possibly involving multiple
spin ring exchange) which preserve the full symmetry of the square lattice.
The model Hd is a member of the class Hs only at λ = 1; at other values
of λ the symmetry group of the square lattice is explicitly broken, and the
doubling of the unit cell was crucial in the analysis of Sect. 9.2. With full
square lattice symmetry, the paramagnetic phase is not determined as simply
as in the small λ expansion, and we have to account more carefully for the
‘resonance’ between different valence bond configurations.
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One ground state of Hs is, of course, the Néel state characterized by
(9.2); this is obtained in the absence of the interactions denoted by ellipses in
(9.28). Now imagine tuning the further neighbor couplings in (9.28) so that
spin rotation invariance is eventually restored and we obtain a paramagnetic
ground state. We can divide the possibilities for this state into two broad
classes, which we discuss in turn.

In the first class of paramagnets, no symmetries of the Hamiltonian are
broken, and the spins have paired with each other into valence bond singlets
which strongly resonate between the large number of possible pairings: this
is a resonating valence bond (RVB) liquid [47,48]. We will discuss such states
further in Sect. 9.5: they have a connection with magnetically ordered sta-
tes with non-collinear magnetic order, unlike the collinear Néel state of the
nearest neighbor square lattice antiferromagnet.

In the second class of paramagnets, the valence bond singlets sponta-
neously crystallize into some configuration which necessarily breaks a lattice
symmetry. A simple example of such a bond-ordered paramagnet is the co-
lumnar state we have already considered in Fig. 9.2. For the dimerized an-
tiferromagnet Hd, the bond configuration in Fig. 9.2 was chosen explicitly
in the Hamiltonian by the manner in which we divided the links into clas-
ses A and B for λ �= 1. For Hs, there is no such distinction between the
links, and hence a state like Fig. 9.2 spontaneously breaks a lattice symme-
try. Furthermore, there are 3 other equivalent states, obtained by successive
90 degree rotations of Fig. 9.2 about any lattice site, which are completely
equivalent. So for Hs, the bond-ordered paramagnet in Fig. 9.2 is four-fold
degenerate. Going beyond simple variational wavefunctions like Fig. 9.2, the
bond-ordered states are characterized by a bond order parameter

Qij = 〈Si · Sj〉; (9.29)

the values of Qij on the links of the lattice in a bond-ordered state have a
lower symmetry than the values of the exchange constants Jij in the Hamil-
tonian. We will develop an effective model for quantum fluctuations about
the collinear Néel state in Hs below, and will find that such bond-ordered
paramagnets emerge naturally [19].

Let us now try to set up a theory for quantum fluctuations about the Néel
state (9.2). It is best to do this in a formulation that preserves spin rotation
invariance at all stages, and this is facilitated by the coherent state path
integral (see Chap. 13 of [49]). The essential structure of this path integral
can be understood simply by looking at a single spin in a magnetic field h with
the Hamiltonian H1 = −h · S. Then its partition function at a temperature
T is given by

Tr exp (h · S/T ) =
∫
Dn(τ) exp

(
i2SA[n(τ)] + S

∫ 1/T

0
dτh · n(τ)

)
.

(9.30)
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ni
nj

n0

2Aij

Fig. 9.7. The path traced out by a single spin on the unit sphere in imaginary
time. After discretizing time, the area enclose by the path is written as the sum
over the areas of spherical triangles: Aij is half the area of the triangle with vertices
n0, ni, nj . Different choices for the arbitrary point n0 correspond to different gauge
choices associated with (9.32) and (9.34).

Here S is the angular momentum of the spin S (we are interested primarily
in the case S = 1/2) and n(τ) is a unit 3-vector with n(0) = n(1/T ). So
the above path integral is over all closed curves on the surface of a sphere.
The first term in the action of the path integral is the crucial Berry phase:
A[n(τ)] is half the oriented area enclosed by the curve n(τ) (the reason for
the half will become clear momentarily). Note that this area is only defined
modulo 4π, the surface area of a unit sphere. The expression (9.30) has an
obvious generalization to the lattice Hamiltonian Hs: the action adds up the
Berry phases of every spin, and there is an additional energy term which is
just the Hamiltonian with the replacement Sj → Snj .

We are now faced with the problem of keeping track of the areas enclosed
by the curves traced out by all the spins. This seems rather daunting, parti-
cularly because the half-area A[n(τ)] is a global object defined by the whole
curve, and cannot be obviously be associated with local portions of the curve.
One convenient way to proceed is illustrated in Fig. 9.7: discretize imaginary
time, choose a fixed arbitrary point n0 on the sphere, and thus write the area
as the sum of a large number of spherical triangles. Note that each triangle
is associated with a local portion of the curve n(τ).

We now need an expression for A(n1,n2,n3), defined as half the area of
the spherical triangle with vertices n1, n2, n3. Complicated expressions for
this appear in treatises on spherical trigonometry, but a far simpler expression
is obtained after transforming to spinor variables [50]. Let us write
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nj ≡ z∗
jaσabzjb, (9.31)

where a, b =↑, ↓ and we will always assume an implied summation over such
indices, σab are the Pauli matrices, and zj↑, zj↓ are complex numbers obeying
|zj↑|2 + |zj↓|2 = 1. Note that knowledge of nj only defines zja up to a U(1)
gauge transformation under which

zja → zjae
iφj . (9.32)

Then, associated with each pair of vertices ni,nj we define

Aij ≡ arg [z∗
iazja] . (9.33)

Under the gauge transformation (9.32) we have

Aij → Aij − φi + φj , (9.34)

i.e. Aij behaves like a U(1) gauge field. Note also that Aij is only defined mo-
dulo 2π, and that Aji = −Aij . For future use, we also mention the following
identity, which follows from (9.31) and (9.33):

z∗
iazja =

(
1 + ni · nj

2

)1/2

eiAij . (9.35)

The classical result for the half-area of the spherical triangle can be written
in the simple form in terms of the present U(1) gauge variables:

A(n1,n2,n3) = A12 +A23 +A31. (9.36)

We chose A as a half-area earlier mainly because then the expressions (9.33)
and (9.36) come out without numerical factors. It is satisfying to observe that
this total area is invariant under (9.34), and that the half-area is ambiguous
modulo 2π.

Using (9.36), we can now write down a useful expression for A[n(τ)]. We
assume that imaginary time is discretized into times τj separated by intervals
∆τ . Also, we denote by j+τ the site at time τj+∆τ , and defineAj,j+τ ≡ Ajτ .
Then

A[n(τ)] =
∑

j

Ajτ . (9.37)

Note that this expression is a gauge-invariant function of the U(1) gauge field
Ajτ , and is analogous to the quantity sometimes called the Polyakov loop.

We are now ready to write down the first form proposed effective action
for the quantum fluctuating Néel state. We do need to address some simple
book-keeping considerations first:
(i) Discretize spacetime into a cubic lattice of points j. Note that the same
index j referred to points along imaginary time above, and to square lattice
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points in Hs. The meaning of the site index should be clear from the context.
(ii) On each spacetime point j, we represent quantum spin operator Sj by

Sj = ηjSnj , (9.38)

where nj is a unit vector, and ηj = ±1 is the sublattice staggering factor
appearing in (9.2). This representation is that expected from the coherent
state path integral, apart from the ηj factor. We have chosen to include ηj

because of the expected local antiferromagnetic correlations of the spins. So
in a quantum fluctuating Néel state, we can reasonably expect nj to be a
slowly varying function of j.
(iii) Associated with each nj , define a spinor zja by (9.31).
(iv) With each link of the cubic lattice, we use (9.33) to associate with it a
Ajµ ≡ Aj,j+µ. Here µ = x, y, τ extends over the 3 spacetime directions.
With these preliminaries in hand, we can motivate the following effective
action for fluctuations under the Hamiltonian Hs:

Z̃ =
∏

ja

∫
dzja

∏
j δ
(
|zja|2 − 1

)
exp

(
1
g̃

∑
〈ij〉 ni · nj + i2S

∑
j ηjAjτ

)
.

(9.39)

Here the summation over 〈ij〉 extends over nearest neighbors on the cubic
lattice. The integrals are over the zja, and the nj and Ajτ are dependent
variables defined via (9.31) and (9.33). Note that both terms in the action
are invariant under the gauge transformation (9.32); consequently, we could
equally well have rewritten Z̃ as an integral over the nj , but it turns out to
be more convenient to use the zja and to integrate over the redundant gauge
degree of freedom. The first term in the action contains the energy of the
Hamiltonian Hs, and acts to prefer nearest neighbor nj which are parallel
to each other—this “ferromagnetic” coupling between the nj in spacetime
ensures, via (9.38), that the local quantum spin configurations are as in the
Néel state. The second term in the action is simply the Berry phase required
in the coherent state path integral, as obtained from (9.30) and (9.37): the
additional factor of ηj compensates for that in (9.38). The dimensionless
coupling g̃ controls the strength of the local antiferromagnetic correlations;
it is like a “temperature” for the ferromagnet in spacetime. So for small g̃ we
expect Z̃ to be in the Néel phase, while for large g̃ we can expect a quantum-
“disordered” paramagnet. For a much more careful derivation of the partition
function Z̃ from the underlying antiferromagnet Hs, including a quantitative
estimate of the value of g̃, see e.g. Chap. 13 of [49].

While it is possible to proceed with the remaining analysis of this sec-
tion using Z̃, we find it more convenient to work with a very closely related
alternative model. Our proposed theory for the quantum fluctuating antifer-
romagnet in its final form is [51,52]
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Z =
∏

jµ

∫ 2π

0

dAjµ

2π

∏

ja

∫
dzja

∏

j

δ
(
|zja|2 − 1

)

exp



1
g

∑

jµ

(
z∗

jae
−iAjµzj+µ,a + c.c.

)
+ i2S

∑

j

ηjAjτ



 .

(9.40)

Note that we have introduced a new field Ajµ, on each link of the cubic lattice,
which is integrated over. Like Aiµ, this is also a U(1) gauge field because all
terms in the action above are invariant under the analog of (9.34):

Ajµ → Ajµ − φj + φj+µ. (9.41)

The very close relationship between Z and Z̃ may be seen [51] by explicitly
integrating over the Ajµ in (9.40): this integral can be done exactly because
the integrand factorizes into terms on each link that depend only on a single
Ajµ. After inserting (9.35) into (9.40), the integral over the jµ link is
∫ 2π

0

dAjµ

2π
exp

(
(2(1 + nj · nj+µ))1/2

g
cos(Ajµ −Ajµ) + i2SηjδµτAjµ

)

= I2Sδµτ

[
(2(1 + nj · nj+µ))1/2

g

]
exp (i2SηjδµτAjµ) ,

(9.42)

where the result involves either the modified Bessel function I0 (for µ = x, y)
or I2S (for µ = τ). We can use the identity (9.42) to perform the integral
over Ajµ on each link of (9.40), and so obtain a partition function, denoted
Z ′, as an integral over the zja only. This partition function Z ′ has essentially
the same structure as Z̃ in (9.39). The Berry phase term in Z ′ is identical to
that in Z̃. The integrand of Z ′ also contains a real action expressed solely as
a sum over functions of ni ·nj on nearest neighbor links: in Z̃ this function is
simply ni ·nj/g̃, but the corresponding function obtained from (9.40) is more
complicated (it involves the logarithm of a Bessel function), and has distinct
forms on spatial and temporal links. We do not expect this detailed form
of the real action function to be of particular importance for universal pro-
perties: the initial simple nearest-neighbor ferromagnetic coupling between
the nj in (9.39) was chosen arbitrarily anyway. So we may safely work with
the theory Z in (9.40) henceforth.

One of the important advantages of (9.40) is that we no longer have to
keep track of the complicated non-linear constraints associated with (9.31)
and (9.33); this was one of the undesirable features of (9.39). In Z, we simply
have free integration over the independent variables zja and Ajµ. The rema-
inder of this section will be devoted to describing the properties of Z as a
function of the coupling g.
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The theory Z in (9.40) has some resemblance to the so-called CPN−1

model from the particle physics literature [50, 53, 54]: our indices a, b take
only 2 possible values, but the general model is obtained when a, b = 1 . . . N ,
and we will also find it useful to consider Z for general N . The case of general
N describes SU(N) and Sp(N) antiferromagnets on the square lattice [19].
Note also that it is essential for our purposes that the theory is invariant
under Ajµ → Ajµ + 2π, and so the U(1) gauge theory is compact. Finally
our model contains a Berry phase term (which can be interpreted as a JµAµ

term associated with a current Jjµ = 2Sηjδµτ of static charges ±2S on each
site) which is not present in any of the particle physics analyses. This Berry
phase term will be an essential central actor in all of our results below for
the paramagnetic phase and the quantum phase transition.

The properties of Z are quite evident in the limit of small g. Here, the
partition function is strongly dominated by configurations in which the real
part of the action is a minimum. In a suitable gauge, these are the configu-
rations in which zja = constant, and by (9.31), we also have nj a constant.
This obviously corresponds to the Néel phase with (9.2). A Gaussian fluctua-
tion analysis about such a constant saddle point is easily performed, and we
obtain the expected spectrum of a doublet of gapless spin waves.

The situation is much more complicated for large g where we should
naturally expect a paramagnetic phase with 〈Sj〉 = 〈nj〉 = 0. This will be
discussed in some detail in Sect. 9.4.1. Finally, we will address the nature of
the quantum phase transition between the Néel and paramagnetic phases in
Sect. 9.4.2.

9.4.1 Paramagnetic Phase

The discussion in this section has been adapted from another recent review
by the author [55].

For large g, we can perform the analog of a ‘high temperature’ expansion
of Z in (9.40). We expand the integrand in powers of 1/g and perform the
integral over the zja term-by-term. The result is then an effective theory
for the compact U(1) gauge field Ajµ alone. An explicit expression for the
effective action of this theory can be obtained in powers of 1/g: this has the
structure of a strong coupling expansion in lattice gauge theory, and higher
powers of 1/g yield terms dependent upon gauge-invariant U(1) fluxes on
loops of all sizes residing on the links of the cubic lattice. For our purposes,
it is sufficient to retain only the simplest such term on elementary square
plaquettes, yielding the partition function

Z̃A =
∏

jµ

∫ 2π

0

dAjµ

2π
exp



 1
e2

∑

�

cos (εµνλ∆νAjλ)− i2S
∑

j

ηjAjτ



 ,

(9.43)
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where εµνλ is the totally antisymmetric tensor in three spacetime dimensions.
Here the cosine term represents the conventional Maxwell action for a com-
pact U(1) gauge theory: it is the simplest local term consistent with the gauge
symmetry (9.41) and which is periodic under Ajµ → Ajµ + 2π; closely rela-
ted terms appear under the 1/g expansion. The sum over � in (9.43) extends
over all plaquettes of the cubic lattice, ∆µ is the standard discrete lattice
derivative (∆µfj ≡ fj+µ − fj for any fj), and e2 is a coupling constant. We
expect the value of e to increase monotonically with g.

As is standard in duality mappings, we first rewrite the partition function
in 2+1 spacetime dimensions by replacing the cosine interaction in (9.43) by
a Villain sum [56,57] over periodic Gaussians:

ZA =
∑

{q̄µ}

∏

jµ

∫ 2π

0

dAjµ

2π
exp

(
− 1

2e2
∑

�

(εµνλ∆νAjλ − 2πq̄µ)2

− i2S
∑

j

ηjAjτ

)
, (9.44)

where the q̄µ are integers on the links of the dual cubic lattice, which pierce
the plaquettes of the direct lattice. Throughout this article we will use the
index ̄ to refer to sites of this dual lattice, while j refers to the direct lattice
on sites on which the spins are located.

We will now perform a series of exact manipulations on (9.44) which will
lead to a dual interface model [19, 20, 58]. This dual model has only positive
weights—this fact, of course, makes it much more amenable to a standard
statistical analysis. This first step in the duality transformation is to rewrite
(9.44) by the Poisson summation formula:

∑

{q̄µ}
exp

(
− 1

2e2
∑

�

(εµνλ∆νAjλ − 2πq̄µ)2
)

=
∑

{āµ}
exp

(
−e

2

2

∑

̄

a2
̄µ − i

∑

�

εµνλāµ∆νAjλ

)
,(9.45)

where āµ (like q̄µ) is an integer-valued vector field on the links of the dual
lattice (here, and below, we drop overall normalization factors in front of the
partition function). Next, we write the Berry phase in a form more amena-
ble to duality transformations. Choose a ‘background’ āµ = a0

̄µ flux which
satisfies

εµνλ∆νa
0
̄λ = ηjδµτ , (9.46)

where j is the direct lattice site in the center of the plaquette defined by
the curl on the left-hand-side. Any integer-valued solution of (9.46) is an
acceptable choice for a0

̄µ, and a convenient choice is shown in Fig. 9.8. Using
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+1 +1
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-1-1

Fig. 9.8. Specification of the non-zero values of the fixed field a0
̄µ. The circles are

the sites of the direct lattice, j, while the crosses are the sites of the dual lattice, ̄;
the latter are also offset by half a lattice spacing in the direction out of the paper
(the µ = τ direction). The a0

̄µ are all zero for µ = τ, x, while the only non-zero
values of a0

̄y are shown above. Notice that the a0 flux obeys (9.46).

(9.46) to rewrite the Berry phase in (9.44), applying (9.45), and shifting āµ

by the integer 2Sa0
̄µ, we obtain a new exact representation of ZA in (9.44):

ZA =
∑

{āµ}

∏

jµ

∫ 2π

0

dAjµ

2π
exp

(
−e

2

2

∑

̄,µ

(āµ − 2Sa0
̄µ)2

−i
∑

�

εµνλāµ∆νAjλ

)
. (9.47)

The integral over the Ajµ can be performed independently on each link,
and its only consequence is the imposition of the constraint εµνλ∆νāλ = 0.
We solve this constraint by writing āµ as the gradient of an integer-valued
‘height’ h̄ on the sites of the dual lattice, and so obtain

Zh =
∑

{h̄}
exp

(
−e

2

2

∑

̄,µ

(∆µh̄ − 2Sa0
̄µ)2

)
. (9.48)

We emphasize that, apart from an overall normalization, we have Zh = ZA

exactly. This is the promised 2+1 dimensional interface, or height, model in
almost its final form.

The physical properties of (9.48) become clearer by converting the “fru-
stration” a0

̄µ in (9.48) into offsets for the allowed height values. This is done
by decomposing a0

̄µ into curl and divergence free parts and writing it in terms
of new fixed fields, X̄ and Yjµ as follows:

a0
̄µ = ∆µX̄ + εµνλ∆νYjλ. (9.49)

The values of these new fields are shown in Fig. 9.9. Inserting (9.49) into
(9.48), we can now write the height model in its simplest form [20]
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Fig. 9.9. Specification of the non-zero values of the fixed fields (a) X̄, (b) Yjµ,
(c) εµνλ∆νYjλ introduced in (9.49). The notational conventions are as in Fig. 9.8.
Only the µ = τ components of Yjµ are non-zero, and these are shown in (b). Only
the spatial components of εµνλ∆νYjλ are non-zero, and these are oriented as in (c)
with magnitude 1/4. The four dual sublattices, W , X, Y , Z, are also indicated in
(c). Note that XW = 0, XX = 1/4, XY = 1/2, and XZ = 3/4.

Zh =
∑

{H̄}
exp

(
−e

2

2

∑

̄

(∆µH̄)
2

)
, (9.50)

where

H̄ ≡ h̄ − 2SX̄ (9.51)

is the new height variable we shall work with. Notice that the Yjµ have
dropped out, while the X̄ act only as fractional offsets (for S not an even
integer) to the integer heights. From (9.51) we see that for half-odd-integer
S the height is restricted to be an integer on one of the four sublattices, an
integer plus 1/4 on the second, an integer plus 1/2 on the third, and an integer
plus 3/4 on the fourth; the fractional parts of these heights are as shown in
Fig. 9.9a; the steps between neighboring heights are always an integer plus
1/4, or an integer plus 3/4. For S an odd integer, the heights are integers on
one square sublattice, and half-odd-integers on the second sublattice. Finally
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for even integer S the offset has no effect and the height is an integer on all
sites. We discuss these classes of S values in turn in the following subsections.

4.1.1 S Even Integer

In this case the offsets 2SX̄ are all integers, and (9.50) is just an ordi-
nary three dimensional height model which has been much studied in the
literature [57,59]. Unlike the two-dimensional case, three-dimensional height
models generically have no roughening transition, and the interface is always
smooth [59]. With all heights integers, the smooth phase breaks no lattice
symmetries. So square lattice antiferromagnets with S even integer can have
a paramagnetic ground state with a spin gap and no broken symmetries. The
smooth interface corresponds to confinement in the dual compact U(1) gauge
theory [60]: consequently the za of Z are confined, and the elementary exci-
tations are S = 1 quasiparticles, similar to the ϕα of Sϕ. This is in accord
with the exact ground state for a S = 2 antiferromagnet on the square lattice
found by Affleck et al., the AKLT state [61].

4.1.2 S Half-Odd-Integer

Now the heights of the interface model can take four possible values, which
are integers plus the offsets on the four square sublattices shown in Fig. 9.9a.
As in Sect. 9.4.1.1, the interface is always smooth i.e. any state of (9.50) has
a fixed average interface height

H ≡ 1
Nd

Nd∑

̄=1

〈H̄〉, (9.52)

where the sum is over a large set of Nd dual lattice points which respect the
square lattice symmetry. Any well-defined value for H breaks the uniform
shift symmetry of the height model under which H̄ → H̄±1. In the present
context, only the value of H modulo integers is physically significant, and
so the breaking of the shift symmetry is not important by itself. However,
after accounting for the height offsets, we now prove that any smooth inter-
face must also break a lattice symmetry with the development of bond order:
this means that ZA in (9.44) describes spin gap ground states of the lattice
antiferromagnet which necessarily have spontaneous bond order.

The proof of this central result becomes clear upon a careful study of
the manner in which the height model in (9.50) and (9.51) implements the
90◦ rotation symmetry about a direct square lattice point. Consider such a
rotation under which the dual sublattice points in Fig. 9.9c interchange as

W → X, X → Y, Y → Z, Z →W. (9.53)

The terms in the action in (9.51) will undergo a 90◦ rotation under this
transformation provided the integer heights h̄ transform as
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0 1/4 0 1/4

-1/4 -1/2 -1/4

0 1/4

1/2

0 1/4

Fig. 9.10. Mapping between the quantum dimer model and the interface model
Zh in (9.50). Each dimer on the direct lattice is associated with a step in height of
±3/4 on the link of the dual lattice that crosses it. All other height steps are ±1/4.
Each dimer represents a singlet valence bond between the sites, as in Fig. 9.2.

hW → hX , hX → hY , hY → hZ , hZ → hW − 1. (9.54)

Notice the all important −1 in the last term—this compensates for the
‘branch cut’ in the values of the offsets X̄ as one goes around a plaquette in
Fig. 9.9c. From (9.54), it is evident that the average height H → H − 1/4
under the 90◦ rotation symmetry under consideration here. Hence, a smooth
interface with a well-defined value of H always breaks this symmetry.

We now make this somewhat abstract discussion more physical by pre-
senting a simple interpretation of the interface model in the language of the
S = 1/2 antiferromagnet [62]. From Fig. 9.9a it is clear that nearest neigh-
bor heights can differ either by 1/4 or 3/4 (modulo integers). To minimize
the action in (9.50), we should choose the interface with the largest possi-
ble number of steps of ±1/4. However, the interface is frustrated, and it is
not possible to make all steps ±1/4 and at least a quarter of the steps must
be ±3/4. Indeed, there is a precise one-to-one mapping between interfaces
with the minimal number of ±3/4 steps (we regard interfaces differing by
a uniform integer shift in all heights as equivalent) and the dimer coverings
of the square lattice: the proof of this claim is illustrated in Fig. 9.10. We
identify each dimer with a singlet valence bond between the spins (the ellip-
ses in Fig. 9.2), and so each interface corresponds to a quantum state with
each spin locked in a singlet valence bond with a particular nearest neighbor.
Fluctuations of the interface in imaginary time between such configurations
correspond to quantum tunneling events between such dimer states, and an
effective Hamiltonian for this is provided by the quantum dimer model [63].
While such an interpretation in terms of the dimer model is appealing, we
should also note that it is not as general as the dual interface model: on
certain lattices, while the collinear paramagnetic state continues to have a
representation as a dual interface model, there is no corresponding dimer
interpretation [64].
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(a) (b)
Fig. 9.11. Sketch of the two simplest possible states with bond order for S =
1/2 on the square lattice: (a) the columnar spin-Peierls states, and (b) plaquette
state. Here the distinct line styles encode the different values of the bond order
parameter Qij in (9.29) on the links. This should be contrasted from Figs. 9.1–
9.4 where the line styles represented distinct values of the exchange constants in
the Hamiltonian. In the present section, the Hamiltonian has the full symmetry of
the square lattice, and the orderings represented above amount to a spontaneous
breaking of the lattice symmetry. Both states above are 4-fold degenerate; an 8-fold
degenerate state, with superposition of the above orders, also appears as a possible
ground state of the generalized interface model. Numerical studies of a number of
two-dimensional quantum antiferromagnets [66–68, 70, 73–75] have found ground
states with spontaneous bond order, similar to the states shown above.

The nature of the possible smooth phases of the interface model are easy to
determine from the above picture and by standard techniques from statistical
theory [20, 62]. As a simple example, the above mapping between interface
heights and dimer coverings allows one to deduce that interfaces with average
height H = 1/8, 3/8, 5/8, 7/8 (modulo integers) correspond to the four-fold
degenerate bond-ordered states in Fig. 9.11a. To see this, select the interface
with h̄ = 0 for all ̄: this interface has the same symmetry as Fig. 9.11a, and
a simple computation summing over sites from (9.51) shows that this state
has average height H = −(0 + 1/4 + 1/2 + 3/4)/4 = −3/8 for S = 1/2. The
remaining three values of H correspond to the three other states obtained
by successive 90◦ rotations of Fig. 9.11a. In a similar manner, interfaces with
H = 0, 1/4, 1/2, 3/4 (modulo integers) correspond to the four-fold degenerate
plaquette bond-ordered states in Fig. 9.11b. A simple example of such an
interface is the “disordered-flat” state [65] in which h̄ = 0 on all sites ̄, except
for the W sublattice which have X̄ = 0; for these sites we have h̄ fluctuate
randomly between h̄ = 0 and h̄ = 1, and independently for different ̄. The
average height of such an interface is H = −((0+1)/2+1/4+1/2+3/4)/4 =
−1/2 for S = 1/2, and the mapping to dimer coverings in Fig. 9.10 shows
easily that such an interface corresponds to the state in Fig. 9.11b. All values
of H other than those quoted above are associated with eight-fold degenerate
bond-ordered states with a superposition of the orders in Fig. 9.11a and b.
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All these phases are expected to support non-zero spin quasiparticle ex-
citations which carry spin S = 1, but not S = 1/2. Despite the local corru-
gation in the interface configuration introduced by the offsets, the interface
remains smooth on the average, and this continues to correspond to confine-
ment in the dual compact U(1) gauge theory [60]. Consequently the spinons
of Fig. 9.3b are confined in pairs. The structure of the resulting S = 1 triplon
quasiparticles is very similar to the excitations of the paramagnetic phase
of the coupled dimer antiferromagnet of Sect. 9.2, as we already noted in
Sect. 9.1.

Support for the class of bond-ordered states described above has appeared
in a number of numerical studies of S = 1/2 antiferromagnets in d = 2
which have succeeded in moving from the small g Néel phase to the large
g paramagnet. These include studies on the honeycomb lattice [66] (duality
mapping on the honeycomb lattice appears in [19]), on the planar pyrochlore
lattice [67,68] (duality mapping for a lattice with the symmetry of the planar
pyrochlore is in [64, 69], with a prediction for the bond order observed), on
square lattice models with ring-exchange and easy-plane spin symmetry [70]
(duality mapping on spin models with easy plane symmetry is in [52,71,72]),
and square lattice models with SU(N) symmetry [73] (the theories (9.40),
with a = 1 . . . N , and (9.50) apply unchanged to SU(N) antiferromagnets).
The case of the square lattice antiferromagnet with first and second neighbor
exchange is not conclusively settled: while two recent studies [74, 75] (and
earlier work [25,76]) do observe bond order in a paramagnetic spin-gap state,
a third [77] has so far not found such order. It is possible that this last study is
observing signatures of the critical point between the Néel and bond-ordered
states (to be described in Sect. 9.4.2) which is expressed in a theory for
deconfined spinons in Zc in (9.55).

Finally, we also mention that evidence for the spontaneous bond order
of Fig. 9.11 appears in recent numerical studies of doped antiferromagnets
[78,79].

4.1.3 S Odd Integer

This case is similar to that S half-odd-integer, and we will not consider it in
detail. The Berry phases again induce bond order in the spin gap state, but
this order need only lead to a two-fold degeneracy.

9.4.2 Critical Theory

We turn finally to the very difficult issue of the nature of the quantum phase
transition from the Néel state to one of the bond-ordered paramagnetic sta-
tes in Fig. 9.10 as a function of increasing g. This has been a long-standing
open problem, and many different proposals have been made. The two phases
break different symmetries of the Hamiltonian, and so are characterized by
very different order parameters (one lives in spin space, and the other in real
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space). Landau-Ginzburg-Wilson (LGW) theory would imply that a generic
second-order transition is not possible between such phases, and one obtains
either a first-order transition or a region of co-existence of the two orders.
However, the bond-order in the paramagnet was obtained entirely from quan-
tum Berry phases attached to the fluctuating Néel order, and it is not clear
that LGW theory applies in such a situation.

Recent work by Senthil et al. [80, 81] has proposed an elegant resolution
to many of these problems, and we will describe their results in the remainder
of this subsection. The results are based upon solutions of a series of simpler
models which strongly suggest that related results also apply to the SU(2)
invariant, S = 1/2 models of interest. The computations are intricate, but the
final results are quite easy to state, and are presented below. We will mainly
limit our discussion here to the case of antiferromagnets of spin S = 1/2.

First, contrary to the predictions of LGW theory, a generic second-order
transition between the Néel state and the bond-ordered paramagnet is indeed
possible (let us assume it occurs at g = gc for Z in (9.40)). The theory for
such a quantum critical point is obtained simply by taking a naive continuum
limit of Z while ignoring both the compactness of the gauge field and the
Berry phases. Remarkably, these complications of the lattice model Z, which
we have so far stated were essential for the complete theory, have effects
which cancel each other out, but only at the critical point. Note compactness
on its own is a relevant perturbation which cannot be ignored i.e. without
Berry phases, the compact and non-compact lattice CP1 model have distinct
critical theories [82]. However, the surprising new point noted by Senthil et
al. [80, 81] is that the non-compact CP1 model has the same critical theory
as the compact CP1 model with S = 1/2 Berry phases. Taking the naive
continuum limit of Z in (9.40), and softening the hard-constraint on the zja,
we obtain the proposed theory for the quantum critical point between the
Néel state and the bond-ordered paramagnet for spin S = 1/2 [80,81]:

Zc =
∫
Dza(r, τ)DAµ(r, τ) exp

(
−
∫

d2rdτ

[
|(∂µ − iAµ)za|2 + s|za|2

+
u

2
(|za|2)2 +

1
4e2

(εµνλ∂νAλ)2
])

. (9.55)

We have also included here a kinetic term for the Aµ, and one can imagine
that this is generated by integrating out large momentum zja. On its own, Zc

describes the transition from a magnetically ordered phase with za condensed
at s < sc, to a disordered state with a gapless U(1) photon at s > sc (here
sc is the critical point of Zc). Clearly the s < sc phase corresponds to the
Néel phase of Z in (9.40) for g < gc. However, the s > sc phase does not
obviously correspond to the g > gc bond-ordered, fully gapped, paramagnet
of Z. This is repaired by accounting for the compactness of the gauge field
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and the Berry phases: it is no longer possible to neglect them, while it was
safe to do so precisely at g = gc. The combined effects of compactness and
Berry phases are therefore dangerously irrelevant at g = gc.

It is important to note that the critical theory of (9.55) is distinct from
the critical theory Sϕ in (9.12), although both theories have a global O(3)
symmetry [82]. In particular the values of the exponents ν are different in
the two theories, and the scaling dimension of the Néel order parameter ϕα

under Sϕ is distinct from the scaling dimension of the Néel order parameter
z∗

aσ
α
abzb at the critical point of Zc.
It is interesting that Zc in (9.55) is a theory for the S = 1/2 spinors za.

These can be understood to be the continuum realization of the spinons shown
earlier in Fig. 9.3b. Thus the spinons become the proper elementary degrees
of freedom, but only at the quantum critical point. Hence it is appropriate
to label this as a ‘deconfined quantum critical point’ [80]. These spinons are
confined into a S = 1 quasiparticle once bond order appears for g > gc, for
reasons similar to those illustrated in Fig. 9.3b.

A key characteristic of this ‘deconfined’ critical point is the irrelevance of
the compactness of the gauge field, and hence of monopole tunnelling events.
A consequence of this is that the flux of the Aµ gauge field in Zc is conserved.
This emergent conservation law, and the associated long-range gauge forces
are key characteristics of such critical points.

We summarize in Fig. 9.12 our results for S = 1/2 square lattice antifer-
romagnets, as described by Z in (9.40).

The claims above for the conspiracy between the compactness and Berry
phases at the critical point are surprising and new. They are central to a com-
plete understanding of square lattice antiferromagnets, and a full justification
of the claims appears in the work of Senthil et al.. The following subsections
illustrate their origin by considering a series of models, of increasing comple-
xity, where similar phenomena can be shown to occur. The reader may also
find it useful to look ahead to Tables 1 and 2, which summarize the intricate
relationships between the models considered.

4.2.1 Lattice Model at N = 1

This subsection describes a simplified lattice gauge theory model introduced
by Sachdev and Jalabert [51]. While the duality analysis presented below was
initiated in [51], its correct physical interpretation, and the implications for
more general models are due to Senthil et al. [80, 81].

The model of interest in this subsection is the N = 1 case of Z. Physically,
such a model will be appropriate for an antiferromagnet in the presence of
a staggered magnetic field: such a field will prefer z↑ over z↓ (say). So we
write the preferred single component complex scalar simply as zj = eiθj , and
obtain from (9.40)
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ggc

or

Fig. 9.12. Phase diagram of the model Z in (9.40) of S = 1/2 antiferromagnets
with full square lattice symmetry. There is a Néel phase for g < gc which breaks
spin rotation invariance; it has a doublet of gapless spin wave excitations. The
bond-ordered paramagnet for g > gc preserves spin rotation invariance but breaks
square lattice symmetry; it has a gap to all excitations, and the non-zero spin
excitations are described by S = 1 triplet quasiparticles which are very similar to
the ‘triplons’ discussed in Sect. 9.2.1. The critical point at g = gc is described by
the theory of S = 1/2 ‘spinons’, Zc in (9.55) at its critical point s = sc; note that
this mapping to the spinon theory Zc does not work away from g = gc, and spinons
are confined for all g > gc. A phase diagram like the one above has been used as a
point of departure to obtain a phase diagram for doped Mott insulators [22,83], as
a description of the cuprate superconductors; evidence for spontaneous bond order
in doped antiferromagnets appears in [78,79].

Z1 =
∏

j

∫ 2π

0

dθj

2π

∫ 2π

0

dAjµ

2π
exp

(
1
e2

∑

�

cos (εµνλ∆νAjλ)

+
1
g

∑

j,µ

cos (∆µθj −Ajµ) + i2S
∑

j

ηjAjτ



 . (9.56)

We have chosen here to explicitly include a compact Maxwell term for the
gauge field, as that proves convenient in the description of the duality map-
pings. Note that if we integrate out the θj for large g, then we again obtain
the model ZA in (9.43) which was used to describe the paramagnetic phase
in Sect. 9.4.1. So bond order appears also in the model Z1 at large g. This
bond order disappears as g is reduced, at a transition we will describe below.

Rather than attack Z1 directly, it is useful as a warm-up, and to make
contact with previous work, to consider a sequence of simpler models that
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have been considered in the literature. As we have emphasized, Z1 features
the combined complications of compactness and Berry phases, essential for
a proper description of quantum antiferromagnets. It is the simplest model
in which it can be shown that these complications effectively neutralize one
another at the critical point.

In the following subsection, we make things simpler for ourselves momen-
tarily by dropping both the compactness and the Berry phases. We will then,
in the subsequent subsections, add these complications back in.

A. XY Model with a Non-compact U(1) Gauge Field

Dropping both compactness and Berry phases, Z1 reduces to

ZSC =
∏

j

∫ 2π

0

dθj

2π

∫ ∞

−∞
dAjµ exp

(
− 1

2e2
∑

�

(εµνλ∆νAjλ)2

+
1
g

∑

j,µ

cos (∆µθj −Ajµ)



 . (9.57)

Notice that the Maxwell term for the gauge field now has a simple Gaussian
form. This is simply the lattice, classical, Ginzburg-Landau model (or an XY
model) of a superconductor at finite temperatures coupled to electromagne-
tism. This model has been studied extensively in the past, and the key result
was provided by Dasgupta and Halperin [84]. As we review below, they sho-
wed that ZSC exhibited an inverted XY transition i.e. it was dual to the
theory of a complex scalar ψ in the absence of a gauge field:

ZSC,dual =
∫
Dψ(r, τ) exp

(
−
∫

d2rdτ

(
|∂µψ|2 + s|ψ|2 +

u

2
|ψ|4

))
. (9.58)

The field ψ is a creation operator for vortices in the original theory of the
Ginzburg-Landau superconductor. These have a short-range interaction (u
above) because of the screening provided by the electromagnetic flux quantum
attached to every vortex in (9.57). So the vortex loops of (9.57) behave like
the world lines of the dual boson field of (9.58). The tuning parameter s
in (9.58) is ‘inverted’ from the perspective of the direct theory: the s < sc

phase with 〈ψ〉 �= 0 has a vortex condensate and so is the normal state of a
Ginzburg-Landau superconductor, while the s > sc phase with 〈ψ〉 = 0 has
the vortices gapped as in the superconducting phase.

We now provide a few steps in the analysis which links (9.57) to (9.58).
The steps are very similar to those described in Sect. 9.4.1 below (9.43) and
(9.44). We write the cosine in (9.57) in its Villain form, decouple it by the
Poisson summation formula using integer currents Jjµ, and also decouple the
Maxwell term by a Hubbard-Stratonovich field P̄µ; this yields the analog of
(9.45) for ZSC:
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ZSC,1 =
∏

j

∫ 2π

0

dθj

2π

∫ ∞

−∞
dAjµ

∑

{Jjµ}

∫ ∞

−∞
dP̄µ exp

(
−e

2

2

∑

̄,µ

P 2
̄µ

−g
2

∑

jµ

J2
jµ + i

∑

j

Jjµ (∆µθj −Ajµ) + i
∑

�

εµνλP̄µ∆νAjλ



 . (9.59)

The advantage of this form is that the integrals over θj and Ajµ can be
performed exactly, and they lead to the constraints

∆µJjµ = 0 ; Jjµ = εµνλ∆νP̄λ. (9.60)

We solve these constraints by writing

Jjµ = εµνλ∆νb̄λ ; P̄µ = b̄µ −∆µϕ̄, (9.61)

where b̄µ is an integer valued field on the links of the dual lattice, and ϕ̄ is
a real valued field on the sites of the dual lattice. This transforms (9.59) to

ZSC,2 =
∏

̄

∫ ∞

−∞
dϕ̄

∑

{b̄µ}
exp

(
−e

2

2

∑

̄,µ

(b̄µ −∆µϕ̄)
2

−g
2

∑

�

(εµνλ∆νb̄λ)2
)

; (9.62)

precisely this dual form was obtained by Dasgupta and Halperin [84], and
used by them for numerical simulations. We proceed further analytically,
using methods familiar in the theory of duality mappings [57]: we promote
the integer valued b̄µ to a real field by the Poisson summation method, and
introduce, by hand, a vortex fugacity yv. This transforms ZSC,2 to

ZSC,3 =
∏

̄

∫ ∞

−∞
db̄µ

∫ ∞

−∞
dϕ̄

∫ ∞

−∞
dϑ̄ exp

(
−e

2

2

∑

̄,µ

(b̄µ −∆µϕ̄)
2

−g
2

∑

�

(εµνλ∆νb̄λ)2 + yv

∑

̄,µ

cos (2πb̄µ −∆µϑ̄)

)
. (9.63)

Notice that the effect of the vortex fugacity is to yield the least action when
b̄µ is an integer (ignore ϑ̄ momentarily): so we have effectively ‘softened’
the integer constraint on b̄µ. We have also introduced here a new real valued
field ϑ̄ on the sites of the dual lattice simply to make the ZSC,3 invariant
under U(1) gauge transformations of b̄µ. This is mainly because the physics
is clearer in this explicitly gauge-invariant form. We could, if we had wished,
also chosen a gauge in which ϑ̄ = 0, and then the field ϑ̄ would not be present
in ZSC,3 (this justifies neglect of ϑ̄ above). In the complete form in (9.63), it
is clear from the first two Gaussian terms that fluctuations of the b̄µ gauge
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field have been ‘Higgsed’ by the real field ϕ̄. Indeed, it is more convenient
to choose a gauge in which ϕ̄ = 0, and we do so. Now the fluctuations of b̄µ
are ‘massive’ and so can be safely integrated out. To leading order in yv, this
involves simply replacing b̄µ with the saddle point value obtained from the
first two Gaussian terms, which is b̄µ = 0. So we have the very simple final
theory

ZSC,4 =
∏

̄

∫ ∞

−∞
dϑ̄ exp

(
yv

∑

̄,µ

cos (∆µϑ̄)

)
, (9.64)

which has the form of the dual XY model. We now take the continuum
limit of (9.64) by a standard procedure [85] of introducing a complex field ψ
conjugate to eiϑ̄ , and obtain the theory ZSC,dual as promised. This establishes
the duality mapping of Dasgupta and Halperin [84].

B. XY Model with a Compact U(1) Gauge Field

Now we ease towards our aim of a duality analysis of Z1, by adding one layer
of complexity to ZSC. We make the gauge field in (9.57) compact by including
a cosine Maxwell term [86]:

ZM =
∏

j

∫ 2π

0

dθj

2π

∫ 2π

0

dAjµ

2π
exp

(
1
e2

∑

�

cos (εµνλ∆νAjλ)

+
1
g

∑

j,µ

cos (∆µθj −Ajµ)



 . (9.65)

The Dasgupta-Halperin duality mapping can be easily extended to this
theory. We now write both cosine terms in their Villain forms, and then
proceed as described above. The results (9.59) and (9.62) continue to have
the same form, with the only change being that the fields P̄µ and ϕ̄ are now
also integer valued (and so must be summed over). Promoting these integer
valued fields to real fields by the Poisson summation method following [57],
we now have to introduce two fugacities: a vortex fugacity yv (as before),
and a monopole fugacity ỹm (discussed below). Consequently, ZSC,3 in (9.63)
now takes the form

ZM,3 =
∏

̄

∫ ∞

−∞
db̄µ

∫ ∞

−∞
dϕ̄

∫ ∞

−∞
dϑ̄ exp

(
−e

2

2

∑

̄,µ

(b̄µ −∆µϕ̄)
2

− g

2

∑

�

(εµνλ∆νb̄λ)2 + yv

∑

̄,µ

cos (2πb̄µ −∆µϑ̄)

+ỹm

∑

̄

cos (2πϕ̄ − ϑ̄)

)
. (9.66)
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Again, the positions of the ϑ̄ above are dictated by gauge invariance, and
the effect of the vortex and monopole fugacities is to soften the integer value
constraints on the b̄µ and ϕ̄. Proceeding as described below (9.63), we work
in the gauge ϕ̄ = 0, and to leading order in yv, ỹm replace b̄µ by its saddle
point value in the Gaussian part of the action, which remains b̄µ = 0. Then,
instead of (9.64), we obtain

ZM,4 =
∏

̄

∫ ∞

−∞
dϑ̄ exp

(
yv

∑

̄,µ

cos (∆µϑ̄) + ỹm

∑

̄

cos (ϑ̄)

)
. (9.67)

We see that the new second term in (9.67) acts like an ordering field on
the dual XY model. Taking the continuum limit as was done below (9.64)
using [85] a complex field ψ conjugate to eiϑ̄ , now instead of ZSC,dual in
(9.58) we obtain [87,88]

ZM,dual =
∫
Dψ(r, τ) exp

(
−
∫

d2rdτ

(
|∂µψ|2 + s|ψ|2

+
u

2
|ψ|4 − ym(ψ + ψ∗)

))
. (9.68)

The new term proportional to ym has the interpretation of a monopole fuga-
city. The compact gauge field now permits Dirac monopoles, which are points
in spacetime at which vortex loops of the ‘superconductor’ can end: hence
ym is coupled to the creation and annihilation operators for the dual boson
ψ i.e. the vortices. In the form (9.68) it is also clear that ym acts like an
ordering field in the dual XY model. We expect that such an XY model has
no phase transition, and 〈ψ〉 �= 0 for all s. So the presence of monopoles has
destroyed the ‘superconducting’ phase. Comparing the properties of (9.58)
and (9.68) we therefore conclude that making the gauge field compact in
ZSC in (9.57) is a strongly relevant perturbation: the inverted XY transition
of ZSC is destroyed in the resulting model ZM .

C. Berry Phases

We are finally ready to face Z1, and add in the final layer of complication
of the Berry phases. Again, the Dasgupta-Halperin duality can be extended
by combining it with the methods of Sect. 9.4.1 (this was partly discussed
in [51]). Now the monopoles carry Berry phases [19, 89], and these lead to
cancellations among many monopole configurations. In the long-wavelength
limit it turns out that the only important configurations are those in which
the total monopole magnetic charge is q times the charge of the elementary
monopole [19,20,89]. Here q is the smallest positive integer such that
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eiπSq = 1, (9.69)

i.e. q = 4 for S half an odd integer, q = 2 for S an odd integer, and q = 1 for
S an even integer. Using the physical interpretation of (9.68), we therefore
conclude that the monopole fugacity term should be replaced by one in which
the monopoles are created and annihilated in multiples of q; the dual theory
of Z1 in (9.56) then becomes

Z1,dual =
∫
Dψ(r, τ) exp

(
−
∫

d2rdτ

(
|∂µψ|2 + s|ψ|2

+
u

2
|ψ|4 − ymq(ψq + ψ∗q)

))
.(9.70)

An explicit derivation of the mapping from Z1 to Z1,dual can be obtained
by an extension of the methods described above for ZSC and ZM . We express
the Berry phase term using the ‘background field’ a0

̄µ in (9.46), and then we
find that ZSC,2 in (9.62) is now replaced by

Z1,2 =
∑

{b̄µ}

∑

{ϕ̄}
exp

(
−e

2

2

∑

̄,µ

(
b̄µ −∆µϕ̄ − 2Sa0

̄µ

)2

−g
2

∑

�

(εµνλ∆νb̄λ)2
)
. (9.71)

Notice that, as in Sect. 9.4.1, the Berry phases appear as offsets in the dual
action. We now promote the integer field b̄µ and ϕ̄ to real fields by the
Poisson summation method (just as in (9.66)), at the cost of introducing vor-
tex and monopole fugacities. The final steps, following the procedure below
(9.66), are to transform to the gauge ϕ̄ = 0, and to then set the ‘Higgsed’
dual gauge field b̄µ to its saddle point value determined from the Gaussian
terms in the action. It is the latter step which is now different, and the pre-
sence of the a0

̄µ now implies that the saddle point value b̄µ will be non-zero
and site dependent. Indeed, it is crucial that the saddle point be determi-
ned with great care, and that the square lattice symmetry of the underlying
problem be fully respected. This saddle point determination is in many ways
analogous to the computation in Sect. III.B of [20], and it is important that
all the modes on the lattice scale be fully identified in a similar manner. The
similarity to [20] becomes clear after using the parameterization in (9.49) for
a0

̄µ in terms of the X̄ and the Yjµ shown in Fig. 9.9. Finally, after trans-
forming b̄µ → b̄µ + 2S∆µX̄ and ϑ̄ → ϑ̄ + 4πSX̄, we obtain from (9.71)
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Z1,3 =
∏

̄

∫ ∞

−∞
db̄µ

∫ ∞

−∞
dϑ̄ exp

(
−e

2

2

∑

̄,µ

(b̄µ − 2Sεµνλ∆νYλ)2

− g

2

∑

�

(εµνλ∆νb̄λ)2 + yv

∑

̄,µ

cos (2πb̄µ −∆µϑ̄)

+ỹm

∑

̄

cos (ϑ̄ + 4πSX̄)

)
. (9.72)

Now, the saddle point value of the massive field b̄µ is easily determined from
the first terms in (9.72), yielding

b̄µ = αεµνλ∆νYjλ. (9.73)

where α ≡ 2Se2/(e2 + 8g). Note that only the spatial components of b̄µ are
non-zero, and these have the simple structure of Fig. 9.9c. In particular, the
magnitude of the b̄µ are the same on all the spatial links, and the use of
(9.49) was crucial in obtaining this appealing result. With this saddle point
value, (9.72) simplifies to the following model for the field ϑ̄ only (this is the
form of (9.67) after accounting for Berry phases):

Z1,4 =
∏

̄

∫ ∞

−∞
dϑ̄ exp

(
yv

∑

̄,µ

cos
(
∆µϑ̄ − 2πb̄µ

)

+ỹm

∑

̄

cos (ϑ̄ + 4πSX̄)

)
. (9.74)

The most important property of this dual XY model is the nature of the
ordering field in the last term of (9.74). For S = 1/2, notice from Fig. 9.9a
that this field is oriented north/east/south/west on the four sublattices in of
the dual lattice in Fig. 9.9c. So if we take a naive continuum limit, the average
field vanishes! This is the key effect responsible for the cancellations among
monopole configurations induced by Berry phases noted earlier; in the dual
formulation, the Berry phases have appeared in differing orientations of the
dual ordering field. The XY model in (9.74) also has the contribution from
b̄µ, which appear as a ‘staggered flux’ acting on the ϑ̄ (see Fig. 9.9c), but
we now show that this is not as crucial in the continuum limit.

Before we take the continuum limit of Z1,4, we discuss its implementation
of the square lattice symmetries. In particular, we are interested in the Z4
symmetry which rotates the four sublattices in Fig. 9.9c into each other,
as the values of X̄ seem to distinguish between them. Let us consider the
symmetry Rn which rotates lattice anticlockwise by an angle nπ/2 about the
direct lattice point at the center of a plaquette in Fig. 9.9c, associated with
the transformation in (9.53). It is easy to see that Z1,4 remains invariant
under Rn provided we simultaneously rotate the angular variables ϑ̄:

Rn : ϑ̄ → ϑ̄ + nSπ. (9.75)
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It is now useful to introduce complex variables which realize irreducible re-
presentations of this Z4 symmetry. We divide the lattice into plaquettes like
those in Fig. 9.9c, and for each plaquette we define variables ψp, with p
integer, by

ψp =
1
2

(
eiϑW + eipπ/2eiϑX + eipπeiϑY + ei3pπ/2eiϑZ

)
. (9.76)

Note that we need only use p = 0, 1, 2, 3 because ψp depends only on
p(mod 4). Under the symmetry Rn we clearly have

Rn : ψp → ein(2S−p)π/2ψp; (9.77)

the factor of einSπ arises from (9.75), and that of e−inpπ/2 from the real-space
rotation of the lattice points. Note that only for p = 2S is ψp invariant under
Rn, and this is consistent with the fact that it is ψ2S which appears in Z1,4 as
the ordering field term. Let us now write the action in Z1,4 in terms of these
new variables. Ignoring the spacetime variation from plaquette to plaquette,
the action per plaquette is

S1,4 = −2yv

3∑

p=0

[
cos (π(p− α)/2) |ψp|2

]
− ỹm (ψ2S + ψ∗

2S) + . . . (9.78)

Here the ellipses represent other allowed terms, all consistent with the sym-
metry (9.77), which must be included to implement the (softened) constraints
on ψp arising from (9.76) and the fact that the eiϑ̄ are unimodular. Apart
from ψ2S , for which there is already an ordering field in the action, the con-
densation of any of the other ψp breaks the lattice symmetry (9.77), and
so drives a quantum phase transition to the bond-ordered state. The choice
among the ψp is controlled by the coefficient of the yv term in (9.78), and
we choose the value of p �= 2S for which cos (π(α+ p)/2) is a maximum. We
are interested in the large g paramagnetic phase, and here α is small, and
the appropriate value is p = 0. The resulting continuum theory for ψ = ψ0
then must be invariant under (9.77), and it is easily seen that this has just
the form Z1,dual in (9.70) with q determined by (9.69). Other choices of p
for the order parameter lead to different types of bond order, with a ground
state degeneracy smaller or larger than the q in (9.69); such states have par-
tial or additional bond order, and are clearly possible in general. However,
our analysis of the paramagnetic states in Sect. 9.4.1 indicates that a choice
ψ = ψp�=0 is unlikely for the models under consideration here, and we will
not consider this case further here.

We have now completed our promised derivation of the model Z1,dual in
(9.70) dual to the N = 1 lattice gauge theory model Z1 in (9.56). Rather
than being an XY model in a field (as in (9.68)), Z1,dual is an XY model
with a q-fold anisotropy. This anisotropy encapsulates the q-fold binding of
monopoles claimed earlier. In the language of (9.74) the average ordering
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Table 9.1. Summary of the duality mappings for N = 1. Only the Lagrangean’s
are specified, and a summation/integration of these over spacetimes is implicit. The
fixed field ηj = ±1 in the Berry phase in the third row is the sublattice staggering
factor in (9.2). The integer q in the third row is specified in (9.69). For S = 1/2,
we have q = 4, and then the ymq perturbation is dangerously irrelevant. Hence the
critical theory for the model with monopoles and Berry phases in the third row, is
identical to that for the first row

N = 1

Direct lattice model Dual model

LSC = (1/(2e2)) (εµνλ∆νAjλ)2

− (1/g) cos (∆µθj −Ajµ)
LSC,dual = |∂µψ|2 + s|ψ|2 +

u

2
|ψ|4

LM = −(1/e2) cos (εµνλ∆νAjλ)

− (1/g) cos (∆µθj −Ajµ)
LM,dual = |∂µψ|2 + s|ψ|2 +

u

2
|ψ|4

− ym(ψ + ψ∗)

L1 = −(1/e2) cos (εµνλ∆νAjλ)

− (1/g) cos (∆µθj −Ajµ) − i2SηjAjτ

L1,dual = |∂µψ|2 + s|ψ|2 +
u

2
|ψ|4

− ymq(ψq + ψ∗q)

fields on the ϑ̄ oscillate from site to site and cancel out, and only the q-
th moment of the field survives. Now the combined effect of the monopoles
and Berry phases in Z1 is decided by the term proportional to ymq. In the
paramagnetic phase of the direct model, which is s < sc and 〈ψ〉 �= 0, this
q-fold anisotropy is certainly very important. For S = 1/2, q = 4 it orders
the ψ field along four particular angles, and these are easily shown to be [51]
one of the four degenerate bond-ordered states in Fig. 9.11. However, at the
critical point s = sc it is known that this 4-fold anisotropy is irrelevant [90]:
so in Z1,dual the monopoles can be neglected at the critical point s = sc, but
not away from it.

We have now achieved the desired objective of this subsection. Compac-
tness alone was a strongly relevant perturbation on the model of a scalar field
coupled to electromagnetism in ZSC. However, when we combined compactn-
ess with the Berry phases in Z1, then we found that the monopoles effectively
cancelled each other out at the critical point for S = 1/2. Consequently the
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theory for the critical point in Z1 is identical to the theory for the critical
point in ZSC, and this is the simple inverted XY model ZSC,dual in (9.58).
The results of this subsection are summarized in Table 1.

4.2.2 Easy Plane Model at N = 2

A second explicit example of the remarkable phenomenon described above
is provided by the physically relevant N = 2 case of the model of central
interest, Z in (9.40), but in the presence of an additional spin-anisotropy
term preferring that the spins lie within the XY plane. In such a situation,
we may write the complex spinor zja as

zja =
1√
2

(
eiθj↑

eiθj↓

)
, (9.79)

so that the action is expressed in terms of two angular fields, θ↑ and θ↓.
Inserting (9.79) in (9.40), we obtain a generalization of the N = 1 model Z1
in (9.56):

Z2 =
∏

j

∫ 2π

0

dθj↑
2π

∫ 2π

0

dθj↓
2π

∫ 2π

0

dAjµ

2π
exp

(
1
e2

∑

�

cos (εµνλ∆νAjλ)

+
1
2g

∑

j,µ,a

cos (∆µθja −Ajµ) + i2S
∑

j

ηjAjτ



 . (9.80)

As in (9.56), we have chosen to explicitly include a Maxwell term for the U(1)
gauge field as it proves convenient in the subsequent duality analysis. The
model Z2 provides a complete description of the phases of the square lattice
antiferromagnet (9.28) with an additional easy-plane anisotropy term.

We can now proceed with a duality analysis of (9.80) using methods pre-
cisely analogous to those discussed in Sect. 9.4.2.1: the only difference is we
now have two angular fields θa=↑,↓, and so certain fields come with two co-
pies. We will therefore not present any details, and simply state the series
of results which appear here, which closely parallel those obtained above for
N = 1.

• Neglecting both compactness of the U(1) gauge field and the Berry phases,
it is straightforward to take the continuum limit of Z2 in its direct repre-
sentation, and we obtain the theory Zc in (9.55), but with an additional
spin-anisotropy term

Z2c =
∫
Dza(r, τ)DAµ(r, τ) exp

(
−
∫

d2rdτ

[
|(∂µ − iAµ)za|2 + s|za|2

+
u

2
(|za|2)2 + v|z↑|2|z↓|2 +

1
4e2

(εµνλ∂νAλ)2
])

, (9.81)
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where v > 0 prefers spins in the easy plane. We can carry through the
analog of the duality mapping between (9.57) and (9.58), and instead of
(9.58) we now obtain a theory for two dual fields ψa representing vortices
in θ↑ and θ↓ [82]

Z2c,dual =
∫
Dψa(r, τ)DBµ(r, τ) exp

(
−
∫

d2rdτ

[
|(∂µ − iBµ)ψ↑|2

+ |(∂µ + iBµ)ψ↓|2 + s|ψa|2 +
u

2
(|ψa|2)2 + v|ψ↑|2|ψ↓|2

+
1

4e2
(εµνλ∂νBλ)2

])
. (9.82)

Note that there is now a non-compact U(1) gauge field Bµ which survives
the continuum limit: this field arises from the analog of the field b̄µ in
(9.63), and here it is not completely Higgsed out. The most remarkable
property of (9.82) is that it is identical in structure to (9.81): the actions
are identical under the mapping z↑ → ψ↑, z↓ → ψ∗

↓ , and Aµ → Bµ. In
other words, the theory Z2c is self-dual [82].

• As in Sect. 9.4.2.1, we next make the Aµ gauge field compact, but continue
to ignore Berry phases i.e. we perform a duality analysis on (9.80), in the
absence of the last term in the action. Now, instead of (9.68), (9.82) is
modified to

Z2M,dual =
∫
Dψa(r, τ)DBµ(r, τ) exp

(
−
∫

d2rdτ

[
|(∂µ − iBµ)ψ↑|2

+ |(∂µ + iBµ)ψ↓|2 + s|ψa|2 +
u

2
(|ψa|2)2 + v|ψ↑|2|ψ↓|2

+
1

4e2
(εµνλ∂νBλ)2 − ym(ψ↑ψ↓ + ψ∗

↓ψ
∗
↑)
])

. (9.83)

The last term represents the influence of monopoles, and these now have
the effect of turning a ψ↑ vortex into a ψ↓ vortex [80–82]. Again, as in
(9.68), the ym term in (9.83) is clearly a strongly relevant perturbation
to Z2c,dual in (9.82). It ties the phases of ψ↑ and ψ↓ to each other, so
that (9.83) is effectively the theory of a single complex scalar coupled to
a non-compact U(1) gauge field Bµ. However, we have already considered
such a theory in the direct representation in (9.57). We can now move
from the dual representation in (9.83) back to the direct representation,
by the mapping between (9.57) and (9.58). This leads to the conclusion,
finally, that the theory (9.83) is dual to an ordinary XY model. In other
words, the theory Z2 in (9.80) without its Berry phase term is an XY
model. However, this is precisely the expected conclusion, and could have
been easily reached without this elaborate series of duality mappings: just
integrating over Ajµ for large e2 yields an XY model in the angular field
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θ↑ − θ↓, which represents the orientation of the physical in-plane Néel
order.

• Finally, let us look at the complete theory Z2. An explicit duality mapping
can be carried out, and as in (9.70), the action (9.83) is replaced by
[52,71,80,81]

Z2M,dual =
∫
Dψa(r, τ)DBµ(r, τ) exp

(
−
∫

d2rdτ

[
|(∂µ − iBµ)ψ↑|2

+ |(∂µ + iBµ)ψ↓|2 + s|ψa|2 +
u

2
(|ψa|2)2 + v|ψ↑|2|ψ↓|2

+
1

4e2
(εµνλ∂νBλ)2 − ymq

(
(ψ↑ψ↓)

q +
(
ψ∗

↓ψ
∗
↑
)q)
])

, (9.84)

where the integer q was defined in (9.69). The subsequent reasoning is the
precise analog of that for N = 1. For S = 1/2 and q = 4, the term pro-
portional to ymq representing q-fold monopole is irrelevant at the critical
point (but not away from it in the paramagnetic phase). Consequently, the
critical theory of (9.84) reduces to (9.82). So just as at N = 1, the com-
bined influence of monopoles and Berry phases is dangerously irrelevant
at the critical point, and for the critical theory we can take a naive conti-
nuum limit of Z2 neglecting both the Berry phases and the compactness
of the gauge field.

We have now completed our discussion of the N = 2 easy plane model
and established the existence of the same remarkable phenomenon found in
Sect. 9.4.2.1 for N = 1, and claimed more generally [80,81] at the beginning
of Sect. 9.4.2 as the justification for the critical theory (9.55). As we saw in
some detail in Sect. 9.4.1, monopoles, and attendant Berry phases, are ab-
solutely crucial in understanding the onset of confinement and bond order
in the paramagnetic phase. However, for S = 1/2, the Berry phases induce
a destructive quantum interference between the monopoles at the quantum
critical point, leading to a critical theory with ‘deconfined’ spinons and a
non-compact U(1) gauge field which does not allow monopoles. These results
are summarized in Table 2.

The results in Tables 1 and 2 can be generalized to arbitrary values of
N , for models with the analog of an ‘easy plane’ anisotropy: as in (9.79), all
the za have equal modulus and are expressed in terms of a = 1 . . . N angles
θa. The dual models have N vortex fields ψa, and N − 1 non-compact U(1)
gauge fields Bbµ, b = 1 . . . (N − 1). For a = 1 . . . (N − 1), the field ψa has a
charge +1 under the gauge field with b = a, and is neutral under all gauge
fields with b �= a. For a = N , the field ψN , has a charge −1 under all N − 1
gauge fields. (This gauge structure is similar to that found in ‘moose’ field
theories [91].) The dual representation of the monopole operator is

∏N
a=1 ψa,

and this appears as the coefficient of ym (notice that this operator is neutral
under all the gauge fields). The qth power of this operator appears as the
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Table 9.2. As in Table 1, but for the N = 2 easy plane case. The index a extends
over the two values ↑, ↓. Again for S = 1/2, q = 4, the critical theory for the
third row is the same as that for the first row. The dual model in the second row
is effectively the theory of a single complex scalar coupled to a non-compact U(1)
gauge field Bµ; by the inverse of the duality mapping in the first row of Table 1,
this theory has a direct XY transition

N = 2, easy plane

Direct lattice model Dual model

L2,SC = (1/(2e2)) (εµνλ∆νAjλ)2

− (1/g) cos (∆µθja −Ajµ)

L2SC,dual = |(∂µ − iBµ)ψ↑|2

+|(∂µ + iBµ)ψ↓|2 + s|ψa|2 +
u

2
(|ψa|2)2

+v|ψ↑|2|ψ↓|2 +
1

2e2
(εµνλ∂νBλ)2

L2M = −(1/e2) cos (εµνλ∆νAjλ)

− (1/(2g)) cos (∆µθja −Ajµ)

L2M,dual = |(∂µ − iBµ)ψ↑|2

+|(∂µ + iBµ)ψ↓|2 + s|ψa|2 +
u

2
(|ψa|2)2

+v|ψ↑|2|ψ↓|2 +
1

2e2
(εµνλ∂νBλ)2

− ym

(
ψ↑ψ↓ + ψ∗

↑ψ
∗
↓
)

L2 = −(1/e2) cos (εµνλ∆νAjλ)

−(1/g) cos (∆µθja −Ajµ) − i2SηjAjτ

L2,dual = |(∂µ − iBµ)ψ↑|2

+|(∂µ + iBµ)ψ↓|2 + s|ψa|2 +
u

2
(|ψa|2)2

+v|ψ↑|2|ψ↓|2 +
1

2e2
(εµνλ∂νBλ)2

− ymq

(
(ψ↑ψ↓)q +

(
ψ∗

↑ψ
∗
↓
)q)

coefficient of ymq. Note that the monopole operators involves a product of
N fields, and for large enough N , both ym and ymq can be expected to be
irrelevant perturbations at the quantum critical point.

Finally, these analyses of Z in (9.40) can be complemented by a study of
its N → ∞ limit, without any easy-plane anisotropy. This was carried out
some time ago [51, 92], and it was found that monopoles were dangerously
irrelevant at the quantum critical point, both with or without Berry phases
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(as noted above for large N in the easy plane case). It is important to note
that the situation at large N is subtly different from that for N = 1, 2: in the
latter case, monopoles are dangerously irrelevant in the presence of S = 1/2
Berry phases, but relevant without Berry phases. The key understanding of
this distinction emerged in the recent work of Senthil et al. [80, 81], which
finally succeeded in placing the earlier large N results within the context of
dual theories of topological defects in statistical mechanics.

9.5 Triangular Lattice Antiferromagnet

We continue our analysis of quantum antiferromagnets with an odd number
of S = 1/2 spins per unit cell, but consider a class qualitatively different from
those in Sect. 9.4. One of the defining properties of the models of Sect. 9.4
was that the magnetically ordered Néel state was defined by (9.2): the aver-
age magnetic moment on all sites were collinear, and only a single vector
n was required to specify the orientation of the ground state. This section
shall consider models in which the moments are non-collinear; the triangular
lattice is the canonical example. However, similar results should also apply
to other two-dimensional lattices with non-collinear ground states, such as
the distorted triangular lattice found in Cs2CuCl4 [11].

We consider the model (9.28), but with the spins residing on the sites
of the triangular lattice. This has a magnetically ordered state illustrated in
Fig. 9.13; for this state (9.2) is replaced by

〈Sj〉 = N0 (n1 cos(Q · r) + n2 sin(Q · r)) . (9.85)

Here Q = 2π(1/3, 1/
√

3) is the ordering wavevector, and n1,2 are two ar-
bitrary orthogonal unit vectors in spin space

n2
1 = n2

2 = 1 ; n1 · n2 = 0. (9.86)

A distinct ground state, breaking spin rotation symmetry, is obtained for
each choice of n1,2.

We now wish to allow the values of n1,2 to fluctuate quantum mechanically
across spacetime, ultimately producing a paramagnetic state. As in Sect. 9.4,
we should account for the Berry phases of each spin while setting up the
effective action: an approach for doing this is presented in Sect. VI of [52].
However, the full structure of the critical theory is not understood in all cases,
as we describe below.

One possible structure of the paramagnetic state is a confining, bond-
ordered state, similar to that found in Sect. 9.4. However, there is no com-
plete theory for a possible direct second-order transition from a non-collinear
magnetically ordered state to such a paramagnet. Ignoring Berry phases, one
could define the complex field Φα = n1α + in2α, which, by (9.86), obeys
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ssc

Fig. 9.13. Quantum phase transition described by Zw in (9.90) as a function of
s. The state on the left has non-collinear magnetic order described by (9.85). The
state on the right is a ‘resonating valence bond’ (RVB) paramagnet with topological
order and fractionalized S = 1/2 neutral spinon excitations (one spinon is shown
above). Such a magnetically ordered state is observed in Cs2CuCl3 [11, 12], and
there is evidence that the higher energy spectrum can be characterized in terms of
excitations of the RVB state [24].

Φ2
α = 0, and then proceed to write down an effective action with the struc-

ture of (9.14). However, it is clear that such a theory describes a transition
to a paramagnetic phase with a doublet of S = 1 triplet quasiparticles, and
we can reasonably expect that such a phase has spontaneous bond order
(in contrast to the explicit dimerization in the models of Sect. 9.2). Berry
phases surely play an important role in inducing this bond order (as they
did in Sect. 9.4.1), but there is no available theory for how this happens
in the context of (9.14). Indeed, it is possible that there is no such direct
transition between the non-collinear antiferromagnet and the bond-ordered
paramagnet, and resolving this issue remains an important open question.

In contrast, it is possible to write down a simple theory for a direct tran-
sition between the non-collinear antiferromagnet and a paramagnetic phase
not discussed so far: a resonating valence bond liquid [47,48,93] with deconfi-
ned spinons and topological order. This theory is obtained by observing that
the constraints (9.86) can be solved by writing [94,95]

n1 + in2 ≡ εabwbσacwc, (9.87)

where wa is a 2 component complex spinor obeying |w↑|2 + |w↓|2 = 1. It
is useful to compare (9.87) with (9.31), which parameterized a single vector
also in terms of a complex spinor za. Whereas (9.31) was invariant under the
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U(1) gauge transformation (9.32), notice that (9.87) is only invariant under
the Z2 gauge transformation

wa(r, τ) → �(r, τ)wa(r, τ), (9.88)

where �(r, τ) = ±1 is an arbitrary field which generates the gauge transfor-
mation. This Z2 gauge transformation will play an important role in under-
standing the structure of the paramagnetic phase [21–23,96,97].

We can now study fluctuations of the non-collinear antiferromagnet by
expressing the effective action in terms of the wa. Apart from the familiar
constraints of spin rotational invariance, and those imposed by (9.88), the
effective action must also obey the consequences of translational invariance
which follow from (9.85); the action must be invariant under

wa → wae
−iQ·a/2, (9.89)

where a is any triangular lattice vector. In the continuum limit, this leads to
the following effective action

Zw =
∫
Dwa(r, τ) exp

(
−
∫

d2rdτ

[
|∂µwa|2 + s|wa|2 +

u

2
(|wa|2)2

])
;

(9.90)

notice there is a free integration over the wa, and so we have softened the
rigid length constraint. Comparing this with (9.55), we observe that the U(1)
gauge field is now missing, and we simply have a Landau-Ginzburg theory for
a 2 component complex scalar. The Z2 gauge invariance (9.88) plays no role
in this continuum critical theory for the destruction of non-collinear magnetic
order, but as we discuss below, it will play an important role in the analysis
of the paramagnetic phase. The theory (9.90) has a global O(4) invariance
of rotations in the 4-dimensional space consisting of the real and imaginary
parts of the 2 components of wa: consequently the critical exponents of (9.90)
are identical to those of the well known 4-component ϕ4 field theory. Notice
that there is no O(4) invariance in the microscopic theory, and this symmetry
emerges only in the continuum limit [95,98]: the simplest allowed term which
breaks this O(4) invariance is |εabwa∂µwb|2, and this term is easily seen to
be irrelevant at the critical point of the theory (9.90).

Let us now turn to a discussion of the nature of the paramagnetic phase
obtained in the region of large positive s in (9.90). Here, the elementary
excitations are free wa quanta, and these are evidently S = 1/2 spinons. There
is also a neutral, spinless topological excitation [21,22,99] whose importance
was stressed in [97]: this is the ‘vison’ which is intimately linked with the
Z2 gauge symmetry (9.88). It is a point defect which carries Z2 gauge flux.
The vison has an energy gap in the paramagnetic phase, and indeed across
the transition to the magnetically ordered state. This was actually implicit
in our taking the continuum limit to obtain the action (9.90). We assumed
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that all important spin configurations could be described by a smooth, single-
valued field wa(r, τ), and this prohibits vison defects around which the wa

are double-valued. It is also believed that the vison gap allows neglect of
Berry phase effects across the transition described by (9.90): after duality,
the Berry phases can be attached to monopoles and visons [97, 100], and
these are suppressed in both phases of Fig. 9.13.

9.6 Conclusions

This article has described a variety of quantum phases of antiferromagnetic
Mott insulators, and the transitions between them.

Let us first summarize the phases obtained in zero applied magnetic field,
and transitions that can be tuned between them by varying the ratio of
exchange constants in the Hamiltonian (experimentally, this can be achie-
ved by applied pressure). The magnetically ordered states discussed were
the collinear Néel state (shown in Figs. 9.4 and 9.12), and the non-collinear
‘spiral’ (shown in Fig. 9.13). We also found paramagnetic states which preser-
ved spin rotation invariance and which had an energy gap to all excitations:
these include the dimerized states (shown in Figs. 9.2 and 9.4), the related
bond-ordered states which spontaneously break lattice symmetries (shown in
Figs. 9.11 and 9.12), and the ‘resonating valence bond’ paramagnet with to-
pological order and deconfined spinons (shown in Fig. 9.13). The continuous
quantum phase transitions we found between these states were:
(a) the transition between the dimerized paramagnet and the collinear Néel
state (both states shown in Fig. 9.4) was described by the theory Sϕ in (9.12);
(b) the transition between the dimerized paramagnet and a non-collinear ma-
gnetically ordered state was described by SΦ in (9.14);
(c) the transition between the collinear Néel state and the paramagnet with
spontaneous bond order (shown in Fig. 9.12) was described for S = 1/2 an-
tiferromagnets by Zc in (9.55);
(d) the transition between the state with non-collinear magnetic order and
the RVB paramagnet (both states shown in Fig. 9.13) was described by Zw

in (9.90).
We also mention here other quantum transitions of Mott insulators, which

involve distinct paramagnets on both sides of the critical point. These we did
not discuss in the present paper, but such transitions have been discussed in
the literature:
(e) the transition between a paramagnet with spontaneous bond order
(Fig. 9.12) and a RVB paramagnet (Fig. 9.13) is described by a compact
U(1) lattice gauge theory with charge 2 Higgs fields (closely related to Z1 in
(9.56)), and is discussed in [81,100,101];
(f ) transitions between paramagnets with different types of spontaneous bond
order can be mapped onto transitions between different smooth phases of
height models like (9.50), and are discussed in [102,103].
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Section 9.3 also considered quantum transitions that could be tuned by an
applied magnetic field. We mainly considered the case of the coupled-dimer
antiferromagnet, but very similar theories apply to the other states discussed
above. The general theory has the structure of SΨ in (9.24), describing the
Bose-Einstein condensation of the lowest non-zero spin quasiparticle excita-
tion of the paramagnet. For the coupled dimer model this quasiparticle had
S = 1, but an essentially identical theory would apply for cases with S = 1/2
spinon quasiparticles.
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Abstract. Transition metal oxides that realize s=1/2 or s=1 quantum spin sy-
stems with low dimensionality or geometrically restricted connectivity are often
described using simple concepts. We will discuss superexchange rules, the realiza-
tion of depleted or open topologies using the lone pair concept and the effect of
charge/orbital ordering. These considerations will be widened by a brief overview
of important materials based on copper-oxygen, vanadium-oxygen and titanium-
oxygen coordinations trying to highlight systematic dependencies with respect to
structural and electronic elements or properties, respectively.

10.1 Introduction and General Remarks

Providing an extensive and somewhat complete review on structural aspects
and electronic properties of low-dimensional quantum spin systems would,
in itself, require a whole book. This chapter will focus on inorganic materi-
als avoiding the rather large number of quantum spin systems prepared by
coordination chemistry.

Transition metal compounds (oxides and halides) have been investiga-
ted intensively in the community of solid state chemists and physicists for
many decades. Structurally, this interest is based on the large number of local
transition metal - oxygen coordinations and the flexibility in linkage of these
groups [1]. Discussing the electronic or magnetic properties of these systems
it is obvious that even this rich structural component cannot explain the large
variability and richness of the observed phase diagrams and electronic pro-
perties. Ranging from insulating to metallic, from antiferromagnetic (AF),
superconducting (SC) to even ferromagnetic (FM) phases and more exotic
charge, spin or orbital ordering phenomena can be observed [2–4]. Important
aspects of these systems that will be further discussed below are visualized
in Fig. 10.1. The nanotube based on Na2V3O7 shown in the center will be
discussed in Sect. 10.4.7.

In first approximation the electronic properties of transition metal compo-
unds are defined by the special character of the nonclosed d-electron shells of
the transition metal ion. In Table 10.1 electronic configurations of transition
metal ions are given. The crystalline electric fields of the surrounding oxy-
gen atoms split the respective energy levels leading to a hierarchy of relevant

P. Lemmens and P. Millet, Spin - Orbit - Topology, a Triptych, Lect. Notes Phys. 645, 433–477
(2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004



434 P. Lemmens and P. Millet

Fig. 10.1. Important aspects of quantum spin systems together with the projection
of a nanotube based on Na2V3O7 as an example of the structural versatility of
transition metal oxides and halides [5]

Table 10.1. Most relevant transition metals and related electronic configurations

spin 1/2 spin 1

Cu2+ 1s2 2s2 2p6 3s2 3p6 3d9 V3+ 1s2 2s2 2p6 3s2 3p6 3d2

V4+ 1s2 2s2 2p6 3s2 3p6 3d1 Ni2+ 1s2 2s2 2p6 3s2 3p6 3d8

Nb4+ 1s2 2s2 2p6 3s2 3p6 3d1

Ti3+ 1s2 2s2 2p6 3s2 3p6 3d1

energy scales. This hierarchy, depending on the local geometrical and electro-
nic configurations, sets the stage for effective low-energy spin/orbital models,
e.g. s=1/2 Heisenberg spins chains or other quantum spin systems, like spin
ladders or spin plaquettes. In Fig. 10.1. a sketch of crystalline electric field
energy levels is given for Cu2+ − 3d9. Please note that the transition metal
ions discussed here all lead to the realization of a small (s=1/2, s=1) spin
moment and a small or negligible orbital moment. These are preconditions
for an overweight of quantum fluctuations at low temperatures.

10.1.1 Antiferromagnetic Correlations and Superconductivity

A large part of the motivation to study transition metal compounds with
small spin and low dimensionality is based on the discovery of high tempera-
ture superconductivity (HTSC) by Bednorz and Müller in the cuprates [6,7].
This extraordinary effect, however, is just on example of correlation-induced
phenomena. The essentially two-dimensional HTSC are based on a square-
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Fig. 10.2. Crystalline electric field scheme or Jahn-Teller diagram of Cu2+ − 3d9

in an isotropic, octahedral and tetragonally distorted local surrounding. The hole
in the dx2−y2 orbital determines its electronic properties

planar Cu-O-coordination with 3d9 − s = 1/2 of Cu2+. The parent insulating
compounds show long range Néel order. Hole doping, either by changing the
oxygen content or the cation stoichiometry, destroys long range order and
enables superconductivity with enormous T′

cs of up to 140 K [7]. The sup-
pression of long range order in a doped 2D quantum antiferromagnet is based
on the frustrating line of spin flips that a moving hole carries behind itself.
The physics of HTSC is therefore not so much related to electron-phonon cou-
pling as in conventional metallic superconductors [8] but to strong electronic
correlations [9–12] on the restricted geometry of the CuO2-plane. However,
full details of this mechanism are presently not understood. For further theo-
retical aspects we refer, e.g. to other chapters of this book. An overview of
inelastic light scattering experiments are given in [13].

The interplay of antiferromagnetic local correlations and superconduc-
tivity is also highlighted by the observation of an antiferromagnetic reso-
nance mode in neutron scattering on several HTSC’s [14–16]. This collec-
tive excitation with the scattering vector q=(π,π) is strongly enhanced with
decreasing temperature, but only in the superconducting state. In low di-
mensional doped systems with appreciable electronic correlations also charge
ordered or spin-charge phase separated phases are expected. Evidence for
such an electronic phase separation has been observed and intensively stu-
died as stripe correlations in underdoped HTSC’s [17, 18]. Also the related
but non-superconducting square plane nickelate La2NiO4 shows stripe cor-
relations. However, in the latter case these are more static [19, 20]. Stripe
formation may also be understood as a spontaneous reduction of dimensio-
nality of the system. The dimensionality of a spin system plays an important
role for the effectiveness of fluctuations to destroy long range order [21, 22].
This argument is valid for a classical system. It becomes even more important
for quantum spin systems [23]. In the presence of additional interactions as
spin-phonon coupling or longer range (intersite) Coulomb interaction alter-
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native instabilities determine the ground state. As a result spin dimerization
or charge ordering may be observed.

10.1.2 Quantum Criticality and the Low Energy Spectrum
of Quantum Spin Systems

Certain parts in the phase diagram of such systems attract our special at-
tention [24–26]. These are given by the close proximity of competing phases
with long range order or short range correlated states, e.g. Néel order and a
spin liquid [4]. If a parameter like doping leads to a diminishing of long-range
order and a dropping of the order temperature to zero, quantum critical be-
havior shows up. The dynamics of the system is governed even at finite but
low temperatures by quantum fluctuations instead of thermal fluctuations
(Fig. 10.3).

In Table 10.2 properties of such a system are summarized. Quantum cri-
ticality or the quantum critical point is a concept of broader validity [24–26].
In quantum spin systems the parameters doping, pressure, stoichiometry, ma-
gnetic field or exchange coupling parameters control the system. Competing
interactions due to spin frustration are of special importance. Within our
concept spin frustration in an antiferromagnet is a very appealing ansatz
as a small change of the topology of the spin system or coupling constants
may lead to a crossover or transition (strictly only at T=0) to a drastically
different ground state.
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Fig. 10.3. Sketch of a phase diagram of a quantum spin system in the proximity of
the quantum critical point at g = gc, with g a controlling parameter. The competing
Néel and short range ordered spin liquid phase enclose a quantum critical regime
with cross over phenomena at finite temperatures. Elementary triplet and spin
wave excitations of the system are sketched in the respective phases. In the quantum
critical regime bound states or longitudinal magnons may be observed due to strong
quantum fluctuations
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Table 10.2. Properties of the ground state and its excitations close to the quantum
critical point of a spin chain with interchain coupling and next nearest neighbor
interaction. The spacial decay of spin correlations, the dispersion, degeneracy and
quantum statistics of the elementary excitation and the bound or collective modes
are given

ground state properties Néel state singlet state/spin liquid

GS and its symmetry broken symmetry preserved
symmetry two sublattices
decay of spin correlations algebraic exponential
elementary excitation gapless spin wave gapped des Cloizeaux-Pearson

triplet
dispersion ω(q‖) J · |sin(q‖)| ∆(q‖) + π · J · |sin(q‖)|
excitation degeneracy 2× 3×
quantum statistics Boson Fermion
bound/collective state longitudinal magnon singlet bound state

Close to the quantum critical point the susceptibility for the formation of
local spin states with s=0 is very large leading to a modification of the low
energy excitation spectrum [27]. In contrast the high energy spectrum does
not so much depend on the control parameters. For the discussed systems
the low energy excitation spectrum consists of elementary and bound sta-
tes, see Table 10.2. The effect of this transition on the bound states is very
drastic. It has been proposed that in the proximity of the quantum critical
point on the singlet side a large number of singlet bound states (s=0) form
that strongly soften in energy approaching the quantum critical point. On
the Néel site of the phase diagram strong quantum fluctuations reduce the
sublattice magnetization and longitudinally polarized magnons develop and
gain spectral weight close to the quantum critical point. Due to the mixing
of competing phases for T�=0 the resulting critical behavior is anomalous.
This scenario of low-energy excitations and bound states has been investi-
gated theoretically for chains [28–30], ladders [31, 32], 2D plaquettes [33–35]
and the Kagome lattice [4, 36]. The importance of frustration [37, 38] and
the coupling to non adiabatic phonons [39–41] has been especially highligh-
ted. Compounds that have been studied with respect to a quantum critical
point are the 1D systems BaCu2Si2O7 and KCuF3 [42, 43], the 2D systems
SrCu2(BO3)2 [44–47], CaV4O9 [48], Cu2Te2O5Br2 [49–52] and the quasi-3D
system Cu6Si6O3 · 6H2O [53]. The former two 2D systems represent short
range ordered states while the latter 2D and quasi-3D systems are in a long
range ordered state. Further details will be discussed below.

In Fig. 10.4 the results of a systematic investigation of bound states in
quantum spin systems using inelastic Raman scattering are shown [27,54,56].
All investigated systems have a spin gap either due to frustration and/or a
dimerization of the spin system. Strong triplet-triplet interaction leads to a
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Fig. 10.4. a) Low temperature Raman scattering on the 2D frustrated
SrCu2(BO3)2, the charge ordered NaV2O5 and the frustrated and dimerized spin
chain system CuGeO3 as function of the reduced energy scale. In the bottom
panel the effect of Zn substitution on the low energy excitation spectrum of
Cu1−xZnxGeO3 is shown, with x=0, 0.0022, 0.0066 (bottom to top) [54, 55]. The
data have been scaled and shifted for clarity. The effect of substitutions on ∆01 in
this concentration range is negligible. b) Binding potential of a coupled spin chain
system with the elementary triplet ∆01, the s=0 singlet bound state ∆00 and other
composite states of higher order. For energies E>2∆01 a dense continuum of single
and multiparticle excitations sets in [29,41]

large binding energy with respect to the energy of two elementary triplets
2∆01. Consequently the compound with many modes at lowest energy and
largest spectral weight is the 2D frustrated SrCu2(BO3)2 [46]. Altogether
5 modes show up at low temperatures with energies Esinglet ranging from
1.1 − 4.1 ∆01, with ∆01=34 K (24 cm−1). The latter two systems, NaV2O5
and CuGeO3, show three and one bound states, respectively [57,58].

In CuGeO3 Zn substitution on the Cu site that induces local spin defects
lead to additional bound states with lower energy corresponding to stron-
ger binding [55, 59, 60]. These results are supported by recent NMR/NQR
experiments that show enhanced singlet correlations near the substitution
center [61]. It is remarkable how sensitive the intensity of primary singlet
bound state depends on an even small doping level. Bound states in 1D spin
system have been described within the concept of soliton states with magne-
toelastic interaction. The binding is then given due to interchain interaction
and coupling to dynamic phonons [41, 62, 63]. In Fig. 10.4b a sketch of the
resulting linear binding potential is shown. The opening angle decreases for
weak coupling leading to an infinity of bound states [30].

Raman scattering is the only spectroscopic measurement technique that is
sensitive to singlet bound states. Only very close to a quantum critical point
these states also contribute to the specific heat of the system [37]. Singlet
bound states are observed in light scattering via an exchange mechanism and
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are related to the density of states-like two-magnon scattering observed in
long range ordered AF [64]. The underlying Hamiltonian is identical to the
Heisenberg model [57]. Spin orbit coupling which would lead to one magnon
scattering and the observation of triplet states does not play an important
role for the systems discussed here.

10.1.3 Frustration

Frustration and quantum criticality are two aspects that are intimately rela-
ted in quantum spin systems. Frustration describes the state of any system
that can not satisfy or comply with all existing interactions. This is evident
for an AF spin system where the spins are arranged on triangles and te-
trahedra as shown in Fig. 10.5. Also cases of next nearest neighbor (nnn)
interactions have often to be considered on a square plaquette or a spin chain
with a nonlinear exchange path. We emphasize that only situations are con-
sidered where the full translational symmetry of the lattice is preserved, i.e.
lattice disorder is not taken into account.

In a classical system frustration would lead to a multitude of possible
states with very close or degenerate energies. This results in ground state de-
generacy and large low- or zero-temperature entropy. For a further evaluation
of the investigated system it is then important to go beyond the local topo-
logy and range of interactions that is shown in Fig. 10.5 and also consider the
global linkage of these elements and further perturbations or anisotropies.

An historical but still interesting example is ice (H2O for T<273 K) [65].
The entropy deficit observed at low temperatures is related to the undercon-

Fig. 10.5. Spin frustration as realized in spin systems with a) triangular, b) te-
trahedral, c) spin chain, and d) square plaquette topology. A wavy line denotes
nnn interaction. In a), b) and d) the oxygen in the superexchange path has been
omitted. The ratio of copper and oxygen radii in c) has been reversed for clarity
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Fig. 10.6. a) Structure of ice (Ih). Each oxygen (larger sphere) has two closer
protons and two protons further apart. b) Specific heat and entropy of the spin
ice Dy2Ti2O7 in the upper and lower panel, respectively. The insets show χ−1(T)
and the topology of the Dy sites, respectively. In the lower panel the entropy of the
Ising system (Rln2) and the experimentally observed entropy with deficit are given
by dotted and dashed curves. In a magnetic field of 0.5 T (open dots) a part of the
entropy is recovered [66]

straint of the proton sites on the tetragonal oxygen sublattice by the local
stoichiometry. In Fig. 10.6a this structure is shown. Each oxygen has two
closer and two neighbor protons further apart. These ice rules, however, do
not determine an unambiguous global structure as for any oxygen site a six-
fold degeneracy of these states exists. Therefore the dielectric constant of
ice remains very large down to temperatures as low as 100K, related to lar-
ger scale proton reorientation processes that slowly freeze-in towards lower
temperatures.

Water ice has a magnetic analogue called spin ice based on corner shared
tetrahedra of Rare Earth ions with FM interactions and Ising anisotropy.
Such a spin arrangement is realized in the pyrochlore Dy2Ti2O7, with Dy3+

in a 4f9 - s=9/2 state [67]. The anisotropy leads to ”two spin in - two spin
out” ice rules within one tetrahedron and a similar entropy deficit. Respective
thermodynamic data with a maximum at about 1K and the derived entropy
are shown in Fig. 10.6b). The advantage of the study of such systems com-
pared with the nonmagnetic cases is the higher cleanliness of the magnetic
system and the possibility to lift a part of the degeneracy by a magnetic
field [66, 68]. The latter effect might have some potential for applications as
the compounds can be used as cooling media in high magnetic fields [69].

Even more fascinating and richer is the behavior of a quantum spin sy-
stems with frustration. Here, the ground state can be formed by any linear
combination of these degenerate states leading to possible new ground states
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without symmetry breaking. An example is the resonating valence bond state
that is stabilized on a Kagome lattice [4, 70]. Although proposed earlier the
RVB state is not a ground state of the square plane of high temperature su-
perconductors [71–73]. In contrast the Kagome lattice with its combination
of depletion and frustration in 2D shown in Fig. 10.11 supports the RVB and
its rich low energy singlet excitation spectrum.

Spin systems with strong frustration have been investigated for many
years and even recently many more interesting compounds have been found
and studied [74–79]. Important question that are in the center of interest
are, e.g. the relation between the effect of frustration and the dimensionality
of the system [80] or the above discussed low energy excitation scheme in
the proximity to a quantum critical point. Frustration may lead to very low
energy singlet excitations of a spin liquid [4,37,81–83]. Further related aspects
will be discussed below.

10.1.4 Orbital Related Effects

As shown in Fig. 10.2, energy and occupation of 3d orbitals depend sensi-
tively on the local symmetry and distortions as an effect of the crystalline
electric fields of the surrounding atoms. On the other side the spatially ani-
sotropic charge distribution can form varying exchange paths and resulting
spin configurations or topologies.

This is evident if we compare the alignment of the eg orbitals (dx2−y2 and
d3z2−r2) with the t2g orbitals (dxy, dyz and dzx). While the former point along
the crystallographic axes, the latter point along the bisecting line. If these
orbital degrees of freedom are taken into account on equal footing spin-orbital
models [84, 85] develop that have their own dynamics and an extraordinary
richness of phases and possible coupled excitations [86–89].

In the limit of large energies of the orbital system with respect to both the
spin system and the investigated temperature range the orbital system is or-
dered and establishes a constant background on which the spin system works.
The related lattice distortions that may have static or dynamic character are
Jahn-Teller distortions and the overall positive energy balance comes from
the lifting of related degeneracies.

An example for such a system is KCuF3 with Cu2+ in a 3d9 configuration.
A eg dx2−y2 orbital is occupied [43, 90]. The Jahn-Teller distortion of the
basic CuF6 octahedra alternates in a and b axis direction along the c axis.
The distortion is intimately coupled to the orientation of one lobe of the
dx2−y2 orbital along the c axis while the other lobe alternates in a and b
axis direction. This forms an homogeneous chain of superexchange coupled
s=1/2 with J=200 K due to the linear Cu-F-Cu superexchange path. The
superexchange path in the other directions is disrupted due to the orbital
ordering in alternating directions. In Fig. 10.7 a projected view on chains of
CuF6 octahedra is given together with a sketch of the ordered planes of dx2−y2

orbitals. The related Jahn-Teller distortions take place at TOO = 800 K
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Fig. 10.7. a) Projected view on distorted CuF6 octahedra forming chains along
the c axis of KCuF3. Potassium sites have been omitted for clarity. b) connecting
the shortest F-F distances the planes of the ordered dx2−y2 orbitals are depicted.
Chains are highlighted by dashed lines

clearly marking a decoupling of the energy scales of spin and orbital system,
respectively.

Obviously, even more interesting situations arise if the orbital ordering is
destabilized by quantum fluctuations (e.g. t2g orbital degeneracy), competing
interactions or a coupling to other degrees of freedom. LaTiO3 and YTiO3
with Ti3+ and a 3d1 electronic structure embedded in a cubic perovskite
structure are proposed to be examples of such a scenario [91–93]. While in the
former compound quantum effects select a particular orbital state depending
on the spin configuration, in the latter a weak orbital order is stabilized
by an order from disorder mechanism. The discussion of the related effect
is nontrivial and goes beyond the scope of this chapter. However, it should
be noted that in 2D and even 3D compounds orbitals may form dynamical
quasi-one dimensional configurations.

There exist interesting concepts for spin-orbital models on a chain or plane
of sites. A coherent spin-orbital structure in a system with orbital degeneracy
can lead to a novel mechanism for obtaining a spin-gap. These gapped phases
are in the proximity to ferromagnetic and antiferromagnetic phases. In a
certain parameter range doubly degenerate ground states are realized which
form alternating spin and orbital singlets [94]. Compounds that optimally
realize this scenario are recently in the center of interest as the expected
anomalies of magnetic and structural properties should be extraordinary.

Promising candidates that show the opening of a comparably large spin
gap together with a lattice distortion are found recently within the titanates,
such as, e.g. MgTi2O4 [95], TiOCl [96], Na2Ti2Sb2O [97], and NaTiSi2O6
[98]. At least for the latter two systems a one-dimensional character of the
electronic structure is evident. A further discussion of these systems will be
given in Sect. 10.5.3.
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10.2 Interplay of Structural and Electronic Properties

It is the challenge of recent activities in solid state chemistry and physics to
find new transition metal compounds that allow studying effects of electro-
nic correlations and reduced dimensionality in a model system-like approach.
Especially the direct observation of a temperature or substitution-induced
crossover into a quantum critical regime is a unique goal. Important aspects
of quantum spin systems that develop from the interplay of electronic corre-
lation with topology are summarized in Fig. 10.1.

From a solid state chemist point of view, there is no obvious possibility
to design solid structures in a predictive and systematic way and this is of
course true for low-dimensional quantum spin systems. One has therefore to
rely on few concepts, like for example dimensional reduction [99], or näive
pictures that have emerged based on experiences with structurally related
materials (cristallo-chemical considerations). This approach has been quite
successful in the case of vanadates. Structural databases [100], e.g. via the
extensive use of web resources, may be an important help if expressive search
criteria can be developed. As an example minerals with the transition metal
ions given in Table 10.1 can be considered.

Mineral compounds provide interesting spin topologies and examples are
now numerous on compounds which also demonstrate unusual magnetic pro-
perties. Let us mention, the volborthite Cu3V2O7(OH)2 · 2H2O [101, 102],
a S = 1/2 Kagomé lattice; the azurite Cu3(OH)2(CO3)2, a one-dimensional
diamond chain [103]; the malachite Cu2(OH)2CO3, a S = 1/2 quantum anti-
ferromagnet with a spin gap [104]; the antlerite Cu3(OH)4SO4 and brochan-
tite Cu4(OH)6SO4 [105]; the paramelaconite Cu4O3 [106,107], the stibivanite
Sb2VO5, a S = 1/2 1D chain [108] and finally the dioptase Cu6Si6O3 · 6H2O,
a S = 1/2 dimer system with its spin topology structure shown in Fig. 10.13
[53].

In the following we will discuss further, more practical concepts to de-
scribe quantum spin systems and apply these systematically to spin systems
with increasing complexity, going from chains, dimerized chains and dimers,
coupled chains or ladders to 2D topologies.

10.2.1 Concepts Based on Structure and Chemistry

Several concepts can be used to develop a basic understanding of low-
dimensional quantum spin systems concerning their exchange topologies and
to model effective low-energy Hamiltonians. This understanding is, e.g. an in-
dispensable condition for an effective search for new systems using the above
mentioned structural databases [100]. A simple approach that has been used
very successfully identifies simple magnetic base units in the crystal structure
that are then coupled to more complicated structures. In Table 10.3 typical
transition metal ion-oxygen polyhedra are given as function of the oxidation
state of the respective ion. This concept of searching for local coordination
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Table 10.3. Typical transition metal ion (TMI) oxygen coordination polyhedra
versus oxidation state. Characteristic coordinations are highlighted

TMI

Vanadium V3+ V4+ V5+

octahedron trig. bipyramid tetrahedron
square pyramid trig. bipyramid
octahedron square pyramid

octahedron

Copper Cu1+ Cu2+ Cu3+

linear square plane octahedron
tetrahedron square pyramid
trigon. bipyramid
square pyramid
pentag. bipyramid

Titanium Ti3+ Ti4+

octahedron tetrahedron
square plane
octahedron

and their linkage works best in systems with low connectivity, where the
transition metal ions have only one or two next neighbor (nn) and next nea-
rest neighbor (nnn) sites with distinctly smaller distance compared to the
distance to other magnetic ions. This means that large variations between
smallest and larger transition metal ion distances should exist that can easily
been evaluated. Using e.g. a layered system as a starting point to reduce the
dimensionality of the spin system to D=2 [99], a further depletion of ma-
gnetic sites can lead to interesting spin topologies with very close nn. This
concept may lose sense if competing antiferromagnetic exchange paths exist
that lead to spin frustration. Nevertheless even such systems are interesting
due to the stabilization of short range ordered states and a potential ground
state degeneracy.

Other approaches use specific structural/chemical properties of nonma-
gnetic groups that lead to very small hopping integrals and a resulting neg-
ligible magnetic exchange. A structural analysis of known quantum spin sy-
stems indicates that in many phases nonmagnetic building bricks are made of
triangles or tetrahedra in the form of carbonates and borates groups (coordi-
nation number: CN3) or silicates, germanates and borates (CN4). To follow
this trend the lone-pair concept has been proposed. This concept is based
on the fact that lone pair elements as Te4+, Se4+, As3+, possess an elec-
tronic charge distribution (noted E) - with a volume close to the one of an
oxygen atom - that is not involved in a chemical bond. Indeed, the classical
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Fig. 10.8. a) Tetrahedron formed by a lone pair - Te - O coordination. b) Crystal
structure of Cu2Te2O5Br2. The sticks with open end mark the approximate position
of the lone pair charge density. The crystallographic unit cell is outlined

coordination polyhedron of a lone pair element is a tetrahedron formed by
three oxygen atoms and the lone pair E as shown in Fig. 10.8. Compara-
bly ”open” structure with low connectivity have been obtained when these
elements are mixed with transition metal ions in presence of halide counter
anions - the latter are used for charge balance purpose and pseudo template
effects (structure directing agents) [49,109,110]. An example is the compound
Cu2Te2O5Br2 which has weakly connected Cu2+ tetrahedra and the magne-
tic properties evidence a proximity to a quantum critical point [27,50–52]. In
Fig. 10.8b the lone pair positions are given for this system.

10.2.2 Angle Dependence of Superexchange

A microscopic approach [3] uses the strong dependence of superexchange
on the angle of the transition metal ion-oxygen-transition metal ion bond.
The Goodenough-Kanamori-Anderson (GKA) superexchange rules [111–114]
concern sign and magnitude of this exchange via orthogonal orbitals. In a very
simplified picture a linear 180 degree superexchange group connecting two 3d
eg orbitals by an oxygen 2p orbital is dominantly AF. The strength of this
exchange decreases strongly if the contained angle gets close to 90 degree and
other FM contributions may dominate.

In Fig. 10.9 it is shown how a 2D square plane can be divided into two ma-
gnetically insulated half-planes. Shifting the unit cell of part by half a lattice
constant edge-sharing plaquettes with a disrupted vertical exchange path are
formed. If two such operations are preformed with cutting lines parallel to
each other we realize a ladder-like exchange topology. The number of rungs
of the embedded ladder depends on the number of unit cells that are enclo-
sed. Compounds that follow such a scheme are the two- and three-leg ladder
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Fig. 10.9. Cutting a 2D square plane and shifting one segment by half a unit cell
leads to a disruption of the vertical exchange paths. A 1D exchange topology is
formed as the AF coupling between the two halves is frustrated. The 90-degree
coupling via edge-coupled plaquettes may also lead to weak FM coupling

systems SrCu2O3, Sr2Cu3O5 and the chain/laddersystem Sr14−xCaxCu24O41
[115]. Similar structures also exist in the vanadates [116–118].

10.3 Copper-Oxygen Coordinations

In the following we will discuss systems based on copper-oxygen coordinations
starting with the simplest superexchange building block, the linear Cu-O-Cu
bond that forms an infinite chain systems. The Sr cuprates, e.g. Sr2CuO3,
SrCuO2, and SrCu2O3, are a prototype family of compounds closely related
to HTSC in their structural and electronic properties [115]. They form spin
chains with linear exchange, zig-zag chains and spin ladders, respectively.
A discussion of thermodynamic and structural properties of these and re-
lated systems can be found in [119, 120] and [115], respectively. The linear
chain Sr2CuO3 [121–125] has a comparably large exchange coupling constant
(J‖ = 1300-1400 K) and shows Néel ordering at only TN = 11 K. In SrCuO2
a zig-zag chain (J‖ = 2100 K) is formed by a corner-sharing arrangement
of two close chains [121, 126]. In Fig. 10.10 the crystal structure of these sy-
stems and the typical temperature dependence of the magnetic susceptibility
for s=1/2 spin systems is shown. The maximum in the susceptibility χ(T)
for a homogeneous chain system is expected at Tchain

max ≈ 0.641 J. This value
is close to Tdimer

max ≈ 0.63 J for a spin dimer system. The susceptibility of 2D
and 3D systems are given for comparison.

The ladder system SrCu2O3 is formed by two coupled chains and has
exchange coupling constants of (J‖ = 850-2000 K, J⊥ = 750-1000 K [123]).
As SrCu2O3 extrapolates in some sense between a chain and a plane of spin
moments it represents a very important class of systems. It shows a spin li-
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Fig. 10.10. a) Structure of the spin chain Sr2CuO3 and b) the zig-zag spin chain sy-
stem SrCuO2. c) Magnetic susceptibility χ(T) of a spin s=1/2 system with J=70 K
for spin dimers, 1D spin chains, 2D planes and of a 3D system [127–129]

quid ground state and a large singlet-triplet gap of δ ≈ 0.5J [130, 131]. This
class of topologies has been intensively investigated as a minimum model
for electronic correlation-induced superconductivity [131–135]. Doping these
systems, however, has proven to be extremely difficult due to electronic lo-
calization and competing instabilities, e.g. a charge density wave. Only in
Sr14−xCaxCu24O41 a sizable hole content on the ladders can be induced by
simultaneous Ca substitution and hydrostatic pressure. The complexity of
this material is enormous. Therefore we refer to [54] and given references
therein.

10.3.1 3D Dimerized Systems and Effects
in Large Magnetic Fields

The simplest realization of a spin gap, however, is a spin dimer. In real
compounds interdimer interactions of different strength and dimensionality
(1D - 3D) always exist. However, it may lead to drastically different physical
properties.

Spin dimer systems with appreciable 3D interdimer interactions are reali-
zed in the copper halides KCuCl3, TlCuCl3 and NH4CuCl3. The dimers are
formed by edge-sharing CuCl6 dioctahedra running parallel to the crystal-
lographic a-axis. These ladder-like groups are separated by the cations.
Appreciable couplings between sites on different ladders exist as shown in
Fig. 10.11a [136]. The compounds KCuCl3 and TlCuCl3 have a singlet gro-
und state and a spin gap of ∆01 = 32 K and ∆01 = 7 K, respectively, as
expected for a dimer system [136–141]. The different magnitude of the spin
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Fig. 10.11. Exchange topology of a) a coupled dimer system as derived for KCuCl3,
b) the Shastry-Sutherland, c) the 1/5 depleted square lattice and d) the Kagome
lattice (a 1/4 depleted triangular lattice). The oxygen sites of the superexchange
path have been omitted. The dashed line in a) correspond to magnetic sites on a
different ac plane

gap is related to a larger interdimer interaction in TlCuCl3. The exchange to-
pology of NH4CuCl3 is less clear and still under debate. The compound shows
a collective ordering at TN= 1.3 K of about 1/4 of the spins determined from
the magnetic entropy released at the transition [142].

In magnetic fields KCuCl3 and TlCuCl3 show transitions into 3D ma-
gnetically ordered gapless phases with isotropic cusp-like minima Hc=22.3 T
and 5.7 T [136, 138, 143], respectively. The effect in the magnetization is
quite small (∆m/m ≈ 10−3) and does not depend on the orientation of the
field. Furthermore, the related phase lines show an upward curvature towards
higher fields for higher temperature. This transition is described as a Bose-
Einstein condensation of dilute magnons [144]. Recent NMR, ultrasonic and
Raman scattering experiments point to an appreciable spin-lattice coupling
and a first order contribution to the character of the transition [145–147].
The idealized case would be an interaction-free system with a T=0 transition
of 3rd order. In Fig. 10.12 sound attenuation as function of the magnetic
field is shown. The sharp peak associated with the transition shows a hyste-
resis [146]. The broad maximum corresponds to a matching of the relaxation
rate of the triplets with the frequency of the sound wave. Sound attenuation
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Fig. 10.12. Magnetic field dependence of the ultrasonic attenuation in TlCuCl3.
The insets show the derived phase diagram compared with earlier thermodynamic
data and the transition regime after subtracting an intrinsic attenuation background
with a weaker field dependence

in such a compound is sensitive to the temperature and field-induced triplet
distribution on the spin dimer lattice.

The compound NH4CuCl3 shows larger changes of the magnetization in
magnetic fields as a sequence of five well-defined transitions (µ0Hc = 5, 12.8,
17.9, 24.7, 29.1 T) with plateaus at m= 1/4, 3/4 and 1, with the magnetiza-
tion m per copper site in units of gµB [148–150].

Plateaus in m(H) of a 1D s=1/2 spin systems are due to a topologically
induced quantization and fulfill the Oshikawa-Yamanaka-Affleck condition
n(s-m) = integer, with n the spatial period of the spin ground state (number
of spins per unit cell), s the magnitude of the spin and m the magnetization
[151]. In a two-leg ladder or a frustrated/dimerized Heisenberg chain this
condition leads to plateaus at m=0 and 1/2 [151–154]. The plateau at m=1/4
in NH4CuCl3 is not understood so far.

A spin dimer system bridging 2D and 3D is the mineral dioptase with
the composition Cu6Si6O3 · 6H2O [53]. The magnetic structure is based on
dimers of Cu2+ that are located in between a stack of Si6O18 rings, see
Fig. 10.13. They form chiral chains along c, placed on a ab-honeycomb lat-
tice. Two coupling constants are defined as an inter-chain J1, which couples
the chiral Cu2+ chains along c and an intra-chain coupling J2. Such a lat-
tice demonstrates how a 3D lattice can be established by just two coupling
constants. For small J1 the Cu-sublattice complies with weakly coupled spin-
1/2 chiral-chains along c which are at sufficiently low temperatures in a long
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Fig. 10.13. a)+b) Structure of the magnetic sites of dioptase in the ab plane and
along the c axis, respectively. c) Phase diagram giving the Néel temperature and
the spin gap as function of the alternation δ of the two coupling parameters, with
J1 = J(1 + δ) (J2 = J(1 − δ)) given by open (full) lines. An arrow marks the
estimated position of dioptase in the phase diagram [53]

range ordered state. In the opposite limit, J2 = 0, the Cu-sublattice redu-
ces to planes of isolated dimers with a spin-gap and no long-range order. In
an evaluation of thermodynamic and Raman scattering data J = 57 K and
δ=0.1 have been estimated, i.e. the system is in proximity to quantum critical
point [53].

10.3.2 2D Dimerized Systems

To realize a gapped or gapless spin liquid ground state in a 2D exchange
topology [54] additional frustrating exchange terms or a depletion of the ma-
gnetic lattice must exist. Examples are the Shastry-Sutherland lattice [155], a
square plane with additional diagonal (nnn) couplings, the square plaquette
lattice, consisting of a 1/5 depleted square plane or the Kagome lattice that
corresponds to a 1/4 depleted triangular lattice [79]. In Fig. 10.11 b)-d) these
topologies are sketched.

Solid state chemistry provides two compounds, SrCu2(BO3)2 [47] and
CaV4O9 [48, 158, 159], that approximate these topologies. In the compound
SrCu2(BO3)2 the diagonal (nnn) couplings (J) are significant compared with
the square plane exchange (J′), giving a ratio J′/J ≈ 0.6 − 0.68 [35, 47] and
strong frustration. This compound is very close to a quantum critical point
as for J’>0.67-0.7J a transition into a Néel phase is expected [160, 161]. A
phase diagram including a 3D interaction J” that destabilizes the singlet
dimer phase is shown in Fig. 10.14a).

Experimentally SrCu2(BO3)2 has a spin gap of ∆01=34 K and very locali-
zed triplet excitations. In large magnetic fields plateaus of the magnetization
are observed at m/ms=0, 1/4, 1/3, corresponding to quasi-localized super-
structures of the magnetization in space [162,163]. In neutron scattering the
spin gap ∆01 (elementary triplet branch) shows only a very weak dispersion as



10 Spin – Orbit – Topology, a Triptych 451

0.0 1.00.5
0.0

0.5

1.0

J’/J

J
’’/

J

QCP

dimer
phase

plaquettes

Haldane
AF long range

order

a)

6

4

1

E
(m

e
V

)

0

(0,0)

q

2

3

5

7

s=1 pair states

8

9

s=0 pair states

triplet

singlet

( ,0)� ( , )� � (0,0)b)

aaaa
aaaa
aaaa
aaaa

Fig. 10.14. a) Phase diagram of SrCu2(BO3)2 as function of the interplane (J’/J)
constants and an intraplane (J”/J) coupling constant, respectively [156]. The bold
and solid lines correspond to quantum phase transitions, the dashed region corre-
spond to a representative parameter set for SrCu2(BO3)2. The 2D quantum critical
point is additionally marked by a circle. b) Dispersion of the elementary triplet
branch compared to singlet and triplet pair states as derived from Neutron and
Raman scattering [44, 46, 157]. The energies of the singlet pair states have been
determined for q=0

shown in Fig. 10.14b). Furthermore, a second triplet branch and singlet pair
states (given at q=0) are observed [44–46,157]. This rich excitation spectrum
follows in some sense the scenario of the evolution of multiparticle states in
the proximity of a quantum critical point as discussed above.

10.3.3 Dimerized Spin Chains

The compound CuGeO3 [54, 164–166] allows to study a spin gap formation
in a dimerized chain as function of temperature. A spin-Peierls transition is
observed at TSP = 14.3 K that leads to a spin gap of ∆01 = 24-30 K and a
reduced gap ratio 2∆01/kBTSP ≈ 3.4 at low temperatures. This compound
has a rich physics that includes spin frustration due to sizable nnn interaction
along the chain and a Cu-O-Cu bonding angle of approximately 98 degrees,
see Fig. 10.5c). A further interesting aspect of this compound is the strong
nonadiabatic coupling of certain phonon modes to the spin system [39,167].

10.3.4 Triangular Lattices and Tetrahedra

Trimer and tetrahedra systems are frustrated and may show short range or
long range order with reduced order parameters. Examples are the diamond
or trimer chain and related topologies with a spin gap and, in contrast, the
2D triangular plane that may order long ranged.



452 P. Lemmens and P. Millet

Fig. 10.15. Magnetic susceptibility of Cu2Te2O5X2, with X = Br,Cl. The inset
shows the derivative ∂χ/∂T at B = 0.1 and 5 T with the transitions assigned by
arrows [50]

The triangular lattice with classical spins is a good example to illustrate
the effect of frustration on a spin system [4]. To construct a ground state of
a AF correlated spin triangle a good starting point is a

∑
s=0 state [79,103].

This, however, does not totally fix the orientation of each spin as a joint
rotation of the three partners is still allowed. Connecting triangles to planes
this underconstraint is partially lifted. The remaining degrees of freedom
lead to new low energy excitations. In 2D systems that show long range
ordering under such circumstances a new universality class of chiral critical
behavior can be observed. This has been found in CsMnBr3, an essentially
2D compound with triangular planes [168–170].

A tetrahedron unit based on four AF coupled quantum spin s=1/2 has
16 states divided into two singlets, three triplets, and a quintuplet. The de-
generacy of the two singlets, a dimer product and a plaquette singlet state,
is controlled by the coupling constants and the quantum case may lead to
interesting low energy singlet degrees of freedom that are easier to describe
than the complex situation of the Kagome lattice [79].

The lone pair system Cu2Te2O5Br2 with it structure shown in Fig. 10.8
and discussed earlier in Sect. 10.2.1 is regarded as representing weakly coupled
s=1/2 tetrahedra [49,51,52]. It shows weak Neel order at T(Br)

N = 11.4 K [50].
An substitution of Br by Cl decreases the unit cell volume and shifts the tran-
sition up to T(Cl)

N = 18.2 K. It is therefore tempting to regard the system
as being close to a quantum critical point. This is supported by the tempe-
rature dependence of the magnetic susceptibility shown in Fig. 10.15. The
susceptibility of Cu2Te2O5(Br,Cl)2 has a maximum at 30 K (Br) and 23 K
(Cl) and then a large part of the susceptibility is vanishing with decreasing
temperature. Due to the reduced order parameter for T<TN a longitudinal
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Table 10.4. Overview of low-dimensional vanadium compounds. The classification
is based on the spin arrangements deduced from crystal structure determinations
- it does not necessarily reflect the spin topology corresponding to the relevant
exchange coupling constants. In some compounds cations like X=Li,Na,Ca,Mg,Sr
and M=Cu(1+),Na,Ca,Ag can be introduced. LiVGe2O6 is a vanadium 3+ compo-
und with s=1

isolated polyhedra chains layers folded layers

K2(VO)V2O7 MgVO3 CaV3O7 Na2V3O7

Li2(VO)SiO4 Sb2VO5 CaV4O9

Li2(VO)GeO4 LiVGe2O6 (Bi2O2)VnO2n+1

(VO)MoO4 XV2O5 XV2O5

CsV2O5 α′-NaV2O5 CaV2O5

(VO)SeO3 η-Na1.286V2O5 MgV2O5

(VO)2P2O7 γ-LiV2O5 β, β′-MV2O5

magnon is observed in Raman scattering experiments [51]. Such an excita-
tion has previously only been observed in neutron scattering experiments on
chain systems [42,43,171].

10.4 Vanadium-Oxygen Coordinations

Within the transition metal oxides, vanadates exhibit a unique structural
chemistry due to their capacity to realize different vanadium-oxygen coordi-
nation schemes associated with different vanadium oxidation states 3+, 4+
and 5+ (Table 10.3 and [1]). In addition, it is possible to isolate a very large
number of mixed-valence compounds. In the frame of quantum spin systems,
the number of vanadium based compounds (V4+, S = 1/2) has increased tre-
mendously now to overtake the cuprates. A review of spin-gap systems based
on the vanadate family can be found in [116].

Important phases currently under intense investigation are listed in Ta-
ble 10.4. They are classified according to their local spin arrangements.
From the structural point of view, it is possible to obtain phases formed
by isolated polyhedra (in the form of a vanadium 4+ square pyramid) like
in K2(VO)V2O7 [172], dimers formed of edge connected square pyramids
pointing up and down as observed in VOSeO3 [173], isolated chains like in
MgVO3 [174,175], 2D layers as in CaV4O9 [176,177] or more exotic structure
as for example for Na2V3O7 [5]. In addition to this structural versatility, va-
nadium oxides present also unusual electronic properties that are based on
the interplay of charge, spin, orbital and lattices degrees of freedom. Furt-
hermore, the possibility to obtain exchange coupling constants ranging from
few Kelvin as in Li2VOSiO4 [178] to hundreds of Kelvin in CaV2O5 [179]
is highlighted. This distinguishes vanadium compounds from copper based
materials.
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10.4.1 MV2O5 and Related Compounds
with Charge Ordering dInstabilities

The family of vanadium oxide compounds of general formula MV2O5 (M=
Li, Na, Ca, Mg) has been extensively studied in terms of low-dimensional
quantum spin systems. Their crystal structures are closely related to the
layered compound V2O5 which is built up in one direction by infinite double
strings of [VO5] square pyramids that share edges and corners along the
short parameter (≈ 3.7 Å, y axis in Fig. 10.16a) and that are held together
by corner sharing pyramids in x direction. The M cations are located in bet-
ween [V2O5]n layers. Different spin arrangements are found depending on
the charge of the cation M. Monovalent cations such as Li and Na lead to
a vanadium mixed valence state with two different crystal structures. In the
case of α′-NaV2O5 all vanadium ions are in the valence state 4.5+ while
in γ-LiV2O5 an electronic localization is established, characterized by two
independent [V5+O5] and [V4+O5] square pyramids. Furthermore in order
to accommodate the high value of the buckling angle observed in the lat-
ter structure (see Table 10.5 and Fig. 10.16) a structural mechanism which
involves a rotation of blocks of two square pyramids takes place leading to
two double strings of V4+ corner connected by double strings of V5+. This
system can then be depicted as a 1D double chain [180]. As a result of this
transformation the oxygen atoms octahedrally coordinate Li atoms. Divalent
cations like Ca and Mg lead to compounds with vanadium atoms in the va-
lence state 4+ which are reminiscent to the spin ladder system SrCu2O3. The
higher polarization of Mg compared to Ca results in a higher buckling angle
for Mg: 21◦ compared to 11.3◦, respectively.

Fig. 10.16. Idealized projection of MV2O5 in the direction [001] showing a) the
ladders and b) a projection in the direction [010] indicating the buckling angle µ
and the bridging oxygen x
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Table 10.5. Vanadium - oxygen distance with respect to the square pyramid basal
plane (d⊥) and buckling angle (µ) of some selected MV2O5 phases

Phase d⊥ (Å) µ (deg) space group Reference

V2O5 V5+, 0.470 0.1 Pmmn [181]
γ-LiV2O5 V4+, 0.636 62.0 Pnma [182]

V5+, 0.539
α′-NaV2O5 V4.5+, 0.548 3.2 Pmmn [183,184]
MgV2O5 V4+, 0.666 21.0 Cmcm [185]
CaV2O5 V4+, 0.648 11.8 Pmmn [179]

Fig. 10.17. Crystal field levels of a V4+ ion in a regular VO5 pyramid as a function
of the distance of the V4+ ion from the basal plane (from [116])

Important structural parameters that need to be addressed with regards
to the magnetic properties are (i) the distance d⊥ of the vanadium atoms
to the basal plane of the square pyramid and (ii) the buckling angle µ. As
mentioned in [186], the ground state of d levels is directly connected to d⊥.
In Fig. 10.17 it is shown that for d⊥ larger than 0.35 Å, the ground state
is dxy in this vanadate family [116]. The angle µ affects the overlap between
the Vdxy and O2p orbitals of the bridging oxygen atom X and therefore the
exchange integrals as observed in the frustrated coupled ladder CaV2O5 and
MgV2O5 [187].

10.4.2 α′-NaV2O5

The compound α′-NaV2O5 is undoubtedly the phase that has received the
most attention among the vanadates because it was first thought to be the
second example of an inorganic Spin-Peierls system [188]. Now the transition
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is understood as a charge ordering with an accompanied spin gap opening.
The basis is a quarter-filled spin-ladder system with at high temperature
all vanadium in the valence state V4.5+ and a centrosymmetric space group
Pmmn [183,184]. At TCO = 34 K it exhibits a charge ordering corresponding
to 2V4.5+ →V5++ V4+ and related to a structural as well as a magnetic phase
transition with the opening of an energy gap for spin excitations (modulation
wave vector q=(1/2, 1/2, 1/4) and ∆ = 9.8 meV, respectively) [189–191]. Re-
cent X-ray anomalous scattering investigations on the charge ordering show
that it is of zig-zag type in all vanadium ladders [192,193] and that different
stacking sequences along the c direction coexist in the structure. These results
are in agreement with a X-ray diffraction investigation of the temperature-
pressure (T-P) phase diagram of α′-NaV2O5, which show the occurrence of
a Devil’s Staircase type phase transition, i.e., the development of a series of
modulation wave vectors along the c∗ direction [194]. Ab initio calculations
indicate that the total charge ordering occurring on the modulated rung is
small with 2δtot = 0.05 e− [195].

10.4.3 β- and β′-MV2O5

β- and β′-MV2O5 (M = Li+, Na+, Ag+, Cu+ and Ca2+, Sr2+, Cd2+, Pb2+)
vanadium bronzes have been known from the fifties with the structure deter-
mination of β-NaxV2O5 [196]. These phases can accommodate a wide range
of cations over an extended range of composition (0.15 ≤ x ≤ 0.65). The
average structure is characterized by tunnels running parallel to the [010]
direction (see Fig. 10.18).

A range of different sites for intercalated cations (denoted M1, M2, M3)
has been observed dependent upon the nature and size of intercalated ca-
tions with for example copper at the site M3. First studied for their po-

Fig. 10.18. Projection of β and β′-type MV2O5 onto the (010) plane. The location
of different sites for various intercalant cations are also shown
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tential use as positive electrodes in lithium batteries and in the context of
bipolaron formation, they have found a renewed interest as quantum spin
systems [117,197–200]. β−Na0.33V2O5 with a mixed valence of V4+/V5+ =
1/5 has received a lot of interest. It exhibits a metal-insulator transition of
a charge ordering type at TCO = 135 K followed by an AF transition at TN
= 25 K. Worth to mention is that the metal-insulator transition is suppres-
sed under hydrostatic pressure and a superconducting phase with Tc= 9 K
appears at P = 8 GPa. This phase is then the first superconducting vana-
date [118]. For other monovalent cation M = Li+ and Ag+ TCO and TN are
90 K, 180 K, and 27 K, 7 K, respectively. The magnetic properties indicates
that the charge ordered state of V4+ correspond to a linear chain [199]. For
divalent cations such as Ca2+ and Sr2+ a charge order transition is observed
at 150 K and 170 K, respectively, followed at low temperature by a spin-gap
behavior suggesting that the magnetic V4+ ions form a two-leg ladder sy-
stem. β- and β′-MV2O5 can then be considered as the archetype system with
the occurrence of charge ordering, spin-liquid state and superconductivity in
the same structural type.

10.4.4 η-Na1.286V2O5

Recently a detailed study of the V4+ richer zone of the sodium-vanadium-
oxygen phase diagram has led to the synthesis and structural characterization
of a new vanadium oxide bronze η-Na1.286V2O5 or Na9V14O35 [202,203]. Its
crystal structure is built up of layers consisting of VO5 square pyramids
sharing edges and corners with their apical oxygen pointing up and down.
These form double strings in the [100] direction of stair-like shape (a step
every tenth VO5 square pyramids). These double strings are isolated in the
[001] direction via VO4 tetrahedra, see Fig. 10.19.

The analysis of the magnetic susceptibility reveals a spin-gap behavior
[204] and an additional small kink at T≈100 K. A careful X-ray diffraction
experiment indicates the presence of weak superlattice reflections correspon-
ding to the doubling of the unit cell b axis below this temperature. The main
structural change associated to this phase transition is the appearance of
charge ordering (Fig. 10.19b) characterized by two different vanadium oxida-
tion states V4+ and V5+ at low temperatures compared to a formal valence
state V4.5+ at room temperature [204]. This phase provides another exam-
ple of a double transition consisting of a magneto-distortion of the lattice
following a charge ordering of the unpaired electrons.

This behavior seems to be a common feature of many vanadium com-
pounds. A better understanding of these phenomena is only achieved if the
local electronic and structural properties are understood to a certain degree.
Then the problem of charge redistribution and the origin of charge ordering
can be addressed.
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Fig. 10.19. a) Projection of η-Na1.286V2O5 onto the (010) plane. b) Charge orde-
ring is evidenced at T<100 K with two crystallographic sites V4+ and V5+ at 15 K
instead of one (open circles) with the formal valence of 4.5+ at room temperature

10.4.5 Depleted Lattices – Playing with Valences (V4+/ V5+)

Vanadates compounds provide good examples of depleted spin lattices. The
very important phase CaV4O9, the first two-dimensional material with a spin-
gap in the spin excitation spectrum [177] belongs to the family CaVnO2n+1
(n = 2, 3, 4) discovered and structurally characterized in the seventies [174,
205, 206]. Its crystal structure depicted in Fig. 10.20 is formed of layers of
VO5 square pyramids: two adjacent VO5 square pyramids that share one edge
pointing alternately up and down. The spin arrangement forms a 1/5 depleted
square lattice as observed in Fig. 10.11c. The spin-gap in this compound was
found to result from a plaquette RVB state [159,207,208].

A further interesting spin topology is observed for the isostructural com-
pounds K2(VO)(V2O7) [209] and (NH4)(VO)(V2O7) [210]. The layered struc-
ture presented in Fig. 10.21 is composed of corner-sharing VO5 square pyra-
mids and tetrahedra: two tetrahedra being connected via one corner to form
[V2O7] groups. One particularity of such structure is that all VO5 square
pyramids point in the same direction (up in Fig. 10.21) as a result of the
uniaxial noncentrosymmetric space group P4bm. The main difference bet-
ween the two phases is the longer c axis for the NH4-compound compared
to K, i.e; 5.56 Å and 5.22 Å, respectively. The spin arrangement can be de-
scribed as a diluted 2D square lattice. The fact that VO5 square pyramids
are slightly tilted with respect to each other (due to the lack of an inversion
center) leads to an appreciable Dzyaloshinskii-Moriya interaction and an ad-
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Fig. 10.20. Projection of CaV4O9 onto the (001) plane

Fig. 10.21. Projection of K2(VO)V2O7 onto the (001) plane. The V4+ square
pyramids and [VO4] tetrahedra are given

ditional c axis anisotropy. In the case of K2(VO)(V2O7), an ordering phase
transition with a primarily AF ordered state accompanied by weak ferroma-
gnetism and a novel field-induced spin reorientations have been observed at
T ≤ TN = 4 K [211].

10.4.6 J1-J2 Model on a Square Lattice

For many years the J1-J2 model on a square lattice has been the object of
intense theoretical research [212–214] and a relatively clear picture has emer-
ged regarding the magnetic phase diagram as a function of the ratio J2/J1
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Fig. 10.22. Schematic phase diagram of a frustrated 2D QHAF on a square lattice
as a function of the ratio J2/J1 of the superexchange couplings

Fig. 10.23. a) Projection of Li2VOXO4 (X=Si, Ge) onto the (001) plane, b)
exchange integrals for the J1-J2 model on a square lattice, and, c) perspective view
of this layered structure. VO5 square pyramids are in dark grey, XO4 tetrahedra in
light grey

(J1 nearest neighbor exchange and J2 second neighbor (diagonal) exchange,
see Fig. 10.22) [215–219].

Recently two phases Li2VOSiO4 and Li2VOGeO4 have been isolated [220]
that represent an experimental realization of this model. The structure is for-
med of VO5 square pyramids pointing alternating up and down (Fig. 10.23a),
and isolated in the [100] and [010] directions by XO4 tetrahedra.

Worth to mention is that the S=1/2 vanadium atoms are slightly displaced
above the basal square plane of the square pyramids by nearly 0.6 Å leading
to two vanadium sub-lattices (Fig. 10.23c) and hence introduce a sizeable
frustration. The compounds Li2VOSiO4 and Li2VOGeO4 undergo a low tem-
perature phase transition to a collinear order as predicted for J2/J1 >0.65 at
TN = 2.86 K and 2.1 K for Si and Ge, respectively. Specific heat and magne-
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tization measurements indicate a ratio J2/J1 = 1.1 ± 0.1 with J1 + J2 = 8.2
± 1 K for Li2VSiO5 and J1 + J2 = 6 K for Li2VGeO5 [178,221,222]. A discre-
pancy remains concerning the ratio J2/J1 since a value close to 12 has been
obtained recently [223]. In-plane exchange integrals J1+J2 = 9.5 ± 1.5 K and
inter-plane exchange integral 0.2-0.3 K have been extracted for Li2VOSiO4
from a tight binding model fitted to the LDA band structure and mapped
onto a Heisenberg model [223–225]. A last determination of the exchange
energies in Li2VOSiO4 obtained from a high temperature series analysis in-
dicates a lower ratio J2/J1 close to 5 [226].

Another interesting result obtained from 29Si NMR spectroscopy is the
observation of a structural distortion just above TN. The phase transition
to the collinear phase seems to be triggered by this distortion which could
affect the superexchange coupling and lift the degeneracy among the two
ground state configurations (I and II in Fig. 10.22); the system selects finally
configuration I for temperatures below TN.

Recent low temperature neutron diffraction measurements on polycrystal-
line Li2VOSiO4 confirm the presence of collinear magnetic order with a
propagation vector (1/2, 1/2, 0). The refined ordered moment at 2 K is
0.46(5) µB [227]. Another experimental realization of the J1-J2 model on the
square lattice is the phase (VO)MoO4, the structure of which being closely
related to Li2VOSiO4. It is built up of VO5 square pyramids isolated by
MoO4 tetrahedra. The value J1 + J2 is equal to 155 K in agreement with the
value derived from electronic structure calculations [228]. Around 100 K a
structural distortion possibly driven by frustration is evidenced and the size
of the distorted domains progressively grows on cooling as the temperature
reaches the transition to the magnetic ground state at Tc ≈ 42 K.

10.4.7 Exotic Topologies

A very peculiar spin arrangement has been obtained in the case of Na2V3O7
(all vanadium in the valence state 4+) [5]. As can be observed in Fig. 10.24a,
VO5 square pyramids share edges and corners to form nanotubes oriented
along the c axis. The cohesion of the network is ensured by sodium atoms
which are located inside - the inner diameter of the nanotube is of approxima-
tely 5 Å - and around individual nanotubes. The idealized representation of
the unfolded nanotube depicted in Fig. 10.24b allows a simple description of
the vanadium polyhedra arrangement. The basic structural unit is formed of
three vanadium square pyramids in grey and three of these units are connec-
ted by edges to form a slice noted (A) which is therefore constituted of nine
square pyramids. The tube is then obtained by a repetition (A), (B), (A),
(B), ... of corner sharing slices, Fig. 10.24c.

This compound provides a unique example of a folded layer leading to 1D
tubular structure. From the magnetic point of view, this is a rather complex
system that involves at least six different coupling constants. The results of
dc-susceptibility measurements indicate that upon reducing the temperature
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Fig. 10.24. a) Projection of Na2V3O7 onto the (001) plane, b) Idealized repre-
sentation of the unfolded vanadium-oxygen nanotube. The basic unit is formed by
V1,V2, V3 in dark gray (shortest V-V distances) and 3 units form one ring, c) The
repetition of the sequence (A)(B)(A).. along the c axis forms the nanotube

Fig. 10.25. Anomalies in 1/T1(T) at Ta, Tb, Tc for Na2V3O7. These characteristic
temperatures corresponds to field-dependent phase transitions as indicated by the
arrows. The state below Ta involves spin degrees of freedom. Ta, Tb and Tc shift
towards T = 0 K with decreasing external field H [229]

to below 100 K V4+ moments are gradually quenched with at 10 K only
one moment out of nine active [230]. At much lower temperatures a phase
transition occurs at a field-dependent transition temperature Ta (Fig. 10.25).
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Na2V3O7 may be considered as a low S = 1/2 system in the quantum critical
limit [229].

10.5 Titanium-Oxygen Coordinations

As discussed in Sect. 10.1.4 the interplay of orbital and spin degrees of fre-
edom in a transition metal oxide may lead to unconventional behavior. In
the following we will discuss three titanates with Ti3+ - t2g - s = 1/2 confi-
guration that demonstrate this effect from structural and electronic point of
view. All compounds show the opening of a comparably large spin gap as the
result of a phase transition that involves a lattice distortion. The established
low temperature spin system is essentially isotropic. Nevertheless, these in-
stabilities are not consistent with the context of spin-Peierls transitions [231]
or strong coupling scenarios via a nonadiabatic coupling to phonons which
worked quite well for CuGeO3 [39, 232].

Severe deviations from such models show up as an extended fluctuation
regime above the transition temperature, a very large spin gap and strong
phonon anomalies. The compounds will be discussed in a sequence with in-
creasing dimensionality of the effective spin system that is established at low
temperatures going from the 1D NaTiSi2O6 via the 2D TiOCl to the 3D
MgTi2O4.

10.5.1 The Pyroxene NaTiSi2O6

The compound NaTiSi2O6 is based on the precious stones or minerals
NaAlSi2O6 and LiAlSi2O6 of the pyroxene family. Chains of edge-shared
TiO6 octahedra along the c axis of the structure exist that are well insulated
by SiO4 groups [233]. These chains promote an antiferromagnetic exchange
between the Ti3+ as shown in the high temperature magnetic susceptibility
in Fig. 10.26 following a Curie-Weiss dependence with ΘCW = -255 K and
C = 0.375 emu·K/mol [98]. For smaller temperatures magnetic correlati-
ons develop that can be modelled by a 1D AF Heisenberg spin system with
J = 295 K. However, before the maximum of the susceptibility is reached a
sharp drop of the susceptibility at Tc=210 K sets in.

This transition is connected with a lattice distortion and a dimer forma-
tion of the Ti3+ sites along the c axis [234]. The Ti-Ti distances alternate
from the homogeneous 3.17 Å to distances of 3.05 Å and 3.22 Å, i.e. by
5.3%. A critical exponent of β(2Θ) ≈ 0.16 has been determined [234]. A
broad maximum in the specific heat corresponds to a change in the entropy
of ∆S ≈ 2.8 J/mol K, about half of the magnetic entropy that would have
been released due to a purely magnetic phase transition, ∆S = R ln(2S +
1) = 5.76 J/mol K.

The sharp drop of the susceptibility can be modelled in the low tempe-
rature regime assuming a spin gap of ∆01 ≈ 500 K. Scaling the transition
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Fig. 10.26. Susceptibility χ(T) of a) NaTiSi2O6 and b) TiOCl together with a
fit χ1D(T) to a AF Heisenberg spin chain with J = 295 K and 660 K (full lines),
respectively [96,98]. The dashed line in (a) shows the high temperature dependence
following a Curie-Weiss law χCW(T) with θCW = -255 K. The inset compares the
low temperature susceptibility with a fit using ∆ ≈ 500 K. The inset in (b) shows
the susceptibility in the proximity of the transitions after subtracting a defect con-
tribution

temperature to this gap a reduced gap ratio of 2∆/kBTSP = 4.8 is deter-
mined for NaTiSi2O6 [98]. This ratio is much larger compared to earlier
observations and theory of spin-Peierls transitions with 2∆/kBTSP = 3.53
derived using the BCS formula in a weak coupling regime [231]. For the
transition in NaV2O5 also a larger value of 2∆/kBTCO = 6.4 has been deter-
mined [190, 235]. Here, however, the spin gap formation is related to charge
ordering and strong electronic correlations [54, 193]. The gap ∆01 of TiOCl
is also large with respect to the exchange coupling constant J leading to a
ratio ∆01/J ≈ ∆01/ΘCW ≈ 0.5 otherwise only achievable in spin ladders.

Large optical phonon anomalies are observed in NaTiSi2O6 at Tc=210 K
as frequency shifts and line widths broadenings [236]. These effects point to
a common origin of the spin gap formation and lattice distortion as a order-
disorder transition of the orbital orientation and consecutive Jahn-Teller di-
stortion. Figure 10.27 shows the temperature dependence of some modes that
show large anomalies and two relevant orbital configurations. A deeper un-
derstanding of this transition is still in progress. The coupling of high energy
electronic to low energy spin degrees of freedom should be made responsible
for the deviations from mean field behavior.

10.5.2 The Bilayer System TiOCl

The 2D titanate TiOCl has a layered structure formed by Ti3+O2− bilayers,
separated by Cl− bilayers. The basic TiCl2O6 octahedra are strongly distor-
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Fig. 10.27. a) Frequencies of anomalous phonon modes in NaTiSi2O6 as function of
temperature and two orbital configurations of Ti3+ that are involved in the orbital
ordering and spin gap formation [236]. The diagonals of the cube faces correspond
to the crystallographic c axis
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Fig. 10.28. a) Projection of the crystal structure of TiOCl along the a axis [237],
b) electronic level scheme and a sketch of the relevant t2g orbitals on a net of
Ti ions. The intralayer dxy orbitals constitute chains along the crystallographic b
axis [96]. The interlayer dxz, dyz orbitals connect upper and lower Ti sites of the
bilayer (larger and smaller dots)

ted and build an edge-shared network in the ab plane of the orthorhombic
unit cell (Fig. 28).
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The magnetic susceptibility χ(T) of TiOCl is shown in Fig. 10.26. It is
very flat and has a broad maximum at Tmax = 400 K [96]. The realization of
a RVB ground state has therefore been proposed for this system [238]. A fit of
a 1D Heisenberg model to the susceptibility, however, leads to a satisfactory
modelling of the data with J = 660 K for T>130 K.

To understand this behavior the magnetic exchange paths have to be
identified. In a axis direction a bridging oxygen exist with large bonding
angles of ≈153o and Ti-Ti distances of 3.79 Å. In b axis direction the Ti-Ti
distance 3.38 Å is much smaller. Only in the ac-plane a shorter distance of
3.21 Å within the bilayer exist. Considering the t2g orbitals dxy, dxz, dyz that
point to the edges of the distorted octahedra then dxz, dyz are oriented in
the latter direction and are quasi-degenerate. In b axis direction, however, a
linear chain of dxy orbitals form that may be the basis of the 1D suscepti-
bility. A band structure calculations supports this view as the dxy orbital is
occupied and is at lowest energy. Using Ti-Ti dxy hopping matrix elements
along this direction an exchange coupling of JLDA+U=t2/U=720 K [96] is
roughly estimated neglecting the problems that a direct Ti-Ti overlap for
such calculations imposes [3, 240].

At lower temperatures the susceptibility in Fig. 10.26 markedly changes.
Two kinks and a sharp drop mark phase transitions of first and second order
at T1st

c = 66 K and T2nd
c =94 K. The first order phase transition also involves a

static structural component as a doubling of the b axis is observed below this
temperature [241]. The first microscopic information about these instabilities
comes from recent NMR/NQR experiments on 35Cl and 47,49Ti.

Single NMR lines are observed for both Ti and Cl sites for temperatures
above T2nd

c indicating only one kind of Ti and Cl site in TiOCl. Below this
temperature the lines broaden significantly and finally split into two lines. As
shown in Fig. 10.29b both transition temperatures show up in the frequencies.
The behavior of the relaxation rates for the two sites is definitely different.
1/T1 at 35Cl sites has a high temperature onset ≈ 200K and shows a cusp
at T2nd

c =94 K. It should be attributed to dynamic lattice distortion that
gradually develop below this temperature scale.

NMR at the 47,49Ti sites shows a decrease in 1/T1 at high temperatures
that forms a maximum in 1/T1T at T<T*=135 K. This implies a decrease
of the spin fluctuations already in the homogeneous state of the spin system
and defines T* as a fluctuation or pseudo gap temperature of TiOCl.

From a fit to 1/T1T∝ exp(−∆01/kBT) a spin gap can be deduced with
∆01≈430 K [239]. This gap with a reduced gap ratio of 2∆/kBTSP = 10-15 is
extraordinarily large and not consistent with a spin-Peierls mechanism in the
weak coupling limit [231]. The pseudo gap phenomena and large fluctuation
effects resemble to high temperature superconductors.

The important role of the lattice system is supported by pronounced an-
omalies of the optical phonons with interlayer displacements that involve
Ti and Cl sites [242]. In Fig. 10.30 Raman spectra of TiOCl are shown for
T>T2nd

c where NMR evidences the opening of the pseudo gap. Three inter-
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Fig. 10.29. a) 1/T1 and b) NMR frequencies at 35Cl. c) 1/T1 and 1/T1T at 47,49Ti
sites of TiOCl [239]

Fig. 10.30. Phonon Raman scattering in TiOCl in the temperature interval from
100-160 K with ∆T=5 K. Phonon lines that origin from the Brillouin zone cen-
ter (boundary) are marked by full (dashed) arrows. Please note the discontinuous
evolution of the scattering intensity for T<T*=135 K [242]

layer phonon modes with c axis displacements are dominant, a Cl-Ti in-phase
mode at 203 cm−1, a O-Ti out-of-phase mode at 365 cm−1 and a Ti-Cl out-of-
phase mode at 430 cm−1. These frequencies agree reasonably well with results
from a shell lattice model. The Raman spectra, however, are dominated for
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T>T1st
c by a very broad excitation that drastically softens approaching T*

from high temperatures. This softening leads to a shift from 160 cm−1 to
approximately 130 cm−1.

Based on these effects it has been suggested, that the dominant mode at
130 − 160 cm−1 is a fluctuation-induced zone-folded mode corresponding to
the Γ -point phonon at 203 cm−1 [242]. A thermal population of this ”soft-
mode” admixes t2g dxz, dyz orbital states to the dxy ground state and enhan-
ces the role of additional competing exchange paths [240]. This admixture
is proposed to be responsible for the extremely large pseudo gap evidenced
in NMR and other anomalies in ESR [243]. This scenario is also in agree-
ment with the stepwise increase of intensity of the folded phonon mode at
T≈135 K in good agreement with the fluctuation scale defined by the NMR
experiments. Interesting to note is that at low temperatures T<T1st

c the broad
anomalies are replaced by a larger number of very sharp phonons that clearly
origin from long-range lattice distortions. Now the compound is again more
close to a conventional spin-Peierls system. The situation resembles to the
vanadate YVO3 where a crystallographic distortion prepares a similar orbital
structure as in TiOCl with a dxy ground state and higher but still fluctuating
dxz, dyz states. This leads in YVO3 to a peculiar magnetization reversal in
weak magnetic fields [244].

10.5.3 The Pyrochlore MgTi2O4

The compound MgTi2O4 realizes a 3D strongly frustrated pyrochlore lattice
with s=1/2. It belongs to the spinel oxides AB2O4 that exhibit a large variety
of interesting ground states with superconductivity, charge ordering or heavy
fermion behavior [95]. For antiferromagnetically coupled Heisenberg spins on
the B cations, as given for MgTi2O4 with Ti3+, a lattice of corner-shared
tetrahedra is formed with maximum frustration and ground state degener-
acy. Only recently a transition from a metallic to an insulating spin liquid
ground state has been observed and partly attributed to orbital degrees of
freedom [95].

In Fig. 10.31 susceptibility and resistivity of MgTi2O4 is shown. At Tc =
260 K χ(T) decreases strongly and ρ(T) increases simultaneously [95]. This
transition is also related to a structural distortion from cubic to tetragonal
symmetry. The distortion may either suggest an orbital ordering or a Peierls-
like scenario for the transition. The latter one can be compared to the metal-
insulator transition in the rutile VO2 [245]. The role of a 1D topology might
be played by chains of edge-charing BO6 octahedra. A local trigonal distortion
may then lift the t2g orbital degeneracy into a1g singlet and eg doublet. An
interplay of these bands and splitting of the a1g due to electronic correlations
should be responsible for the transition and the singlet ground state [95].
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Fig. 10.31. Susceptibility and resistivity of the 3D pyrochlore MgTi2O4. At
Tc = 260 K a strong decrease in χ(T) and a sudden increase in ρ(T) are obser-
ved [95]. The insets show the susceptibility after subtracting a defect contribution
and the logarithm of the conductivity vs. 1/T

10.6 Conclusion

For the presented cuprates, vanadates and titanates a peerless richness of
phases and quantum spin phenomena has been highlighted. While for the
cuprates recent interest is centered on spin liquid states based on unconven-
tional topologies, the quantum nature of vanadates and titanates are often
realized due to the interplay of orbital configurations with magnetism. The
presented advance of understanding is related to the significant progress made
in materials science of complex transition-metal oxides as well as to the mo-
tivating interplay between experiment and theory that is very characteristic
for this area of physics.
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